Journal of Applied Electrochemistry

, Volume 14, Issue 2, pp 221–230 | Cite as

Electrolytic nickel—molybdenum—vanadium alloy coatings as a material with a decreased hydrogen overvoltage

  • J. Gala
  • A. Małachowski
  • G. Nawrat


The process of electrodeposition of Ni-Mo-V alloys from an alkaline tartrate bath was studied. The effect of the cathodic current density on the chemical composition, phase composition and surface morphology of Ni-Mo-V alloy deposits, as well as on the current efficiency of the deposition process, was determined. Codeposition of molybdenum and vanadium with nickel and formation of the Ni-Mo-V alloy is possible due to the effects of depolarization and overpolarization occurring in the process of codischarge of the complex ions of these metals. It was observed that the use of cathodes electrodeposited with Ni-Mo-V alloy containing 9–12% Mo and 0.1–0.2% V for water electrolysis resulted in a decreased overpotential for hydrogen evolution.


Hydrogen Physical Chemistry Nickel Vanadium Molybdenum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    US Patent 3291 744 (1966).Google Scholar
  2. [2]
    A. Małachowski,Zesz. Nauk. Politech. Ślask. Chem. 50 (1969) 201.Google Scholar
  3. [3]
    US Patent 3947 331 (1976).Google Scholar
  4. [4]
    US Patent 4152 240 (1979).Google Scholar
  5. [5]
    A. Małachowski, Doctor's thesis, Silesian Technical University, Gliwice (1972).Google Scholar
  6. [6]
    A. J. Lisagor and N. N. Gracianskij,Ukr. Chim. Z. 31 (1965) 799.Google Scholar
  7. [7]
    O. P. Biespałko and J. D. Wdowienko, ‘Elektroosazdienie mietałłow i spławow iz tartratnych elektrolitow’, Izd. Naukowa Dumka, Kijew (1971).Google Scholar
  8. [8]
    L. J. Kadanier, ‘Elektroosazdienie błagorodnych mietałłow’, Technika, Kijew (1968).Google Scholar
  9. [9]
    US Patent 3272 728 (1966).Google Scholar
  10. [10]
    US Patent 4104 133 (1978).Google Scholar
  11. [11]
    US Patent 4010 085 (1977).Google Scholar
  12. [12]
    PRL Patent 73897 (1971).Google Scholar
  13. [13]
    A. Małachowski,Zesz. Nauk. Politech. Ślask. Chem. 65 (1973) 235.Google Scholar
  14. [14]
    UK Patent 1510099 (1976).Google Scholar
  15. [15]
    US Patent 4033837 (1977).Google Scholar
  16. [16]
    PRL patent 87 341 (1974).Google Scholar
  17. [17]
    Galvanizer's Handbook, WNT, Warszawa (1973).Google Scholar
  18. [18]
    J. Gala, Diploma mgr-work, Silesian Technical University, Gliwice (1973).Google Scholar
  19. [19]
    J. Gala, A. Budniok and E. Łagiewka, ‘Prace Naukowe u. śl. nr 165’, Fizyka i Chemia Metali2 (1977) 53.Google Scholar
  20. [20]
    A. T. Wasko, ‘Elektrochimia molibdena i wolframa’, Izd. Naukowa Dumka, Kijew (1977).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • J. Gala
    • 1
  • A. Małachowski
    • 2
  • G. Nawrat
    • 2
  1. 1.Institute of Physics and Chemistry of MetalsSilesian UniversityKatowicePoland
  2. 2.Institute of Inorganic Chemistry and TechnologySilesian Technical UnivesityGliwicePoland

Personalised recommendations