Advertisement

Journal of Applied Electrochemistry

, Volume 14, Issue 2, pp 209–220 | Cite as

The paired electrochemical synthesis of sorbitol and gluconic acid in undivided flow cells. I

  • P. N. Pintauro
  • D. K. Johnson
  • K. Park
  • M. M. Baizer
  • K. Nobe
Papers

Abstract

The strategy of paired electrochemical synthesis for the production of organic chemicals, in which the reactions at both the anode and cathode simultaneously contribute to the formation of the final product(s), could result in as much as a 50% reduction in energy consumption as compared to conventional electro-organic syntheses. In order to evaluate this hypothesis the electrochemical oxidation of glucose to gluconic acid and the reduction of glucose to sorbitol were paired in undivided flow-through parallel plate and packed bed cells.

To date, the optimum electrode materials and operating conditions for the paired synthesis are: an amalgamated zinc cathode, a graphite anode, an initial glucose concentration of 0.8 mol dm−3, a 0.8 mol dm−3 NaBr supporting electrolyte, an electrolyte flow rate of 0.81 min−1 and an electrolyte pH of 7. Under these conditions the current efficiencies for sorbitol and gluconic acid were 26% and 68%, respectively at 0.25 F mole−1. Current losses are believed to be due to hydrogen evolution and the reduction ofδ-gluconolactone (an intermediate in the formation of gluconic acid) to glucose.

Keywords

Sorbitol Hydrogen Evolution Current Efficiency Electrochemical Oxidation NaBr 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. T. Sanders and R. A. Hales,Trans. Electrochem. Soc. 96 (1949) 241.Google Scholar
  2. [2]
    M. Fedoronko,Adv. Carbohydr. Chem. Biochem. 29 (1947) 107.Google Scholar
  3. [3]
    A. Bin Kassim, PhD Thesis, University of Salford, England (1979).Google Scholar
  4. [4]
    H. Chum and R. A. Osteryoung, ‘Survey of the Electrochemistry of Some Biomass-Derived Compounds’, SERI Report No. TR 332417 (1981).Google Scholar
  5. [5]
    S. M. Cantor and Q. P. Peniston,J. Amer. Chem. Soc. 62 (1940) 2113.Google Scholar
  6. [6]
    J. M. Los, L. B. Simpson and K. Wiesner,ibid. 75 (1953) 6346.Google Scholar
  7. [7]
    Idem, ibid. 78 (1956) 1564.Google Scholar
  8. [8]
    H. J. Creighton,Trans. Electrochem. Soc. 75 (1939) 289.Google Scholar
  9. [9]
    M. L. Wolfrom, K. Konigsberg, F. B. Moody and R. M. Goepp, Jr,J. Amer. Chem. Soc. 68 (1946) 122, 578.Google Scholar
  10. [10]
    E. A. Parker and S. Swann, Jr,Trans. Electrochem. Soc. 92 (1947) 343.Google Scholar
  11. [11]
    N. G. Belenkaya and N. A. Belozersky,Zh. Obshch. Khim. 19 (1949) 1664.Google Scholar
  12. [12]
    R. A. Hales, US Patent No. 2 300 218 (1942).Google Scholar
  13. [13]
    A. Bin Kassim, C. L. Rice and A. T. Kuhn,J. Appl. Electrochem. 11 (1981) 261.Google Scholar
  14. [14]
    Idem, 77 (1981) 683.Google Scholar
  15. [15]
    H. S. Isbell and H. L. Frush,J. Res. Natl. Bur. Stand. 6 (1931) 1145.Google Scholar
  16. [16]
    H. S. Isbell, H. L. Frush and F. J. Bates,ibid. 8 (1932) 571.Google Scholar
  17. [17]
    C. G. Fink and D. B. Summers,Trans. Electrochem. Soc. 74 (1938) 625.Google Scholar
  18. [18]
    M. Ya. Fioshin and I. A. Avrutskaya,J. Appl. Chem. USSR 42 (1969) 2153, 2337.Google Scholar
  19. [19]
    F. Beck,Angew. Chem. Int. Ed. Eng. 11 (1972) 760.Google Scholar
  20. [20]
    Y. Pocker and E. Green,J. Amer. Chem. Soc. 95 (1973) 113.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • P. N. Pintauro
    • 1
  • D. K. Johnson
    • 1
  • K. Park
    • 1
  • M. M. Baizer
    • 1
  • K. Nobe
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations