Advertisement

Journal of Applied Electrochemistry

, Volume 14, Issue 2, pp 177–186 | Cite as

Hypochlorite electro-generation. I. A parametric study of a parallel plate electrode cell

  • G. H. Kelsall
Papers

Abstract

A parametric study is described of a parallel plate Ti/PbO2/x mol dm−3 NaCl/Ti hypochlorite cell, for which the cell voltage, current efficiency, and energy yield (mol ClO kWh−1) were examined as functions of current density, chloride concentration, and electrolyte flow rate, inlet temperature and pH.

The cell was found to behave ohmically, with current efficiencies of 85–99% for 0.5 mol dm−3 NaCl electrolyte, a typical chloride concentration for sea water. However, the hypochlorite energy decreased substantially with increased current density, reflecting the large contribution of the electrolyte ohmic potential drop to the cell voltage.

The behaviour of the Ti/PbO2 anode was found to be irreproducible, and low temperature (say ⩽ 278K)/high current density operation was irreversibly detrimental both in terms of the anode potential/cell voltage and current efficiency.

Keywords

Hypochlorite Parametric Study Chloride Concentration Parallel Plate Current Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

b

polarization resistance (ohm m2)

dmin

interelectrode spacing to minimize the cell voltage (m)

f(x)

volume fraction of gas at levelx f

av

average volume fraction of gas

F

Faraday constant (96487 C mol−1)

h

electrode length/height (m)

i(x)

current density at positionx (A m−2)

iav

average current density (A m−2)

I

cell current (A)

P

pressure of gas evolved at electrodes (N m−2)

R

universal gas constant (8.314 J mol−1K−1 )

Reff

total ohmic resistance of electrolyte and gas in cell (ohm)

s

bubble rise rate (m s−1)

\(t_{Cl^ - } \)

chloride ion transport number

T

electrolyte temperature (K)

w

electrode width (m)

x

distance from bottom of electrodes (m)

z

number of Faradays per mole of gas evolved

η(x)

overpotential at positionx (V)

π

resistivity of gas free electrolyte (ohm m)

π(x)

resistivity at levelx of electrolyte containing bubbles (ohm m)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ‘Local Generation and Use of Chlorine and Hypochlorite’, SCI Electrochemical Technology Group Meeting, London, 14–16 October 1980.Google Scholar
  2. [2]
    G. H. Kelsall, Electricity Council Research Centre Report N1059 (June 1977).Google Scholar
  3. [3]
    A. T. Kuhn and R. B. Lartey,Chem. Ing. Tech. 47 (1975) 129.Google Scholar
  4. [4]
    C.W. Tobias,J. Electrochem. Soc. 106 (1959) 333.Google Scholar
  5. [5]
    Z. Nagy,J. Appl. Electrochem. 6 (1976) 171.Google Scholar
  6. [6]
    N. Ibl and D. Landolt,J. Electrochem. Soc. 115 (1968) 713.Google Scholar
  7. [7]
    L. Hammar and G. Wranglen,Electrochim. Acta 9 (1964) 1.Google Scholar
  8. [8]
    A. T. Kuhn, H. Hamzah and G. C. S. Collins,J. Chem. Tech. Biotechnol 30 (1980) 423.Google Scholar
  9. [9]
    A. T. Kuhn and H. Hamzah,Chem. Ing. Technol. 52 (1980) 762.Google Scholar
  10. [10]
    G. R. Heal, A. T. Kuhn and R. B. Lartey,J. Electrochem. Soc. 124 (1977) 1690.Google Scholar
  11. [11]
    D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier, Amsterdam (1977).Google Scholar
  12. [12]
    For example L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013.Google Scholar
  13. [13]
    N. Hackerman and C. D. Hall,J. Electrochem. Soc. 101 (1959) 827.Google Scholar
  14. [14]
    N. T. Thomas and K. Nobe,ibid. 117 (1970) 622.Google Scholar
  15. [15]
    D. T. Pickett and K. L. Ong.Electrochim. Acta 19 (1974) 875.Google Scholar
  16. [16]
    R. E. De La Rue and C. W. Tobias,J. Electrochem. Soc. 106 (1959) 827.Google Scholar
  17. [17]
    R. E. Meredith and C. W. Tobias, ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 2. Interscience, New York (1962).Google Scholar
  18. [18]
    J. Newman, ‘Electrochemical Systems’, PrenticeHall, New York (1973).Google Scholar
  19. [19]
    D. Jennings, A. T. Kuhn, J. B. Stepanek and R. Whitehead,Electrochim. Acta 20 (1975) 903.Google Scholar
  20. [20]
    M. Morita, C. Iwakura and H. Tamura,Electrochim. Acta 22 (1977) 325.Google Scholar
  21. [21]
    T. Loucka,J. Appl. Electrochem. 7 (1977) 211.Google Scholar
  22. [22]
    M. Hayes and A. Kuhn,ibid. 8 (1978) 327.Google Scholar
  23. [23]
    D. Gilroy,ibid. 12 (1982) 171.Google Scholar
  24. [24]
    For example, P. Faber, ‘Power Sources 4’, Proceedings 8th International Symposium, Brighton (September 1972), (edited by D. H. Collins) Oriel Press, Newcastle, UK (1973).Google Scholar
  25. [25]
    G. H. Kelsall and R. Stevens, Electricity Council Research Centre Report M1266 (July 1979).Google Scholar
  26. [26]
    G. H. Kelsall, unpublished work.Google Scholar
  27. [27]
    J. E. Bennett, Symposium on Electrochemical Reaction Engineering, Southampton University, (18–20 April 1979).Google Scholar
  28. [28]
    G. H. Kelsall, Electricity Council Research Centre Report N1060 (June 1977).Google Scholar
  29. [29]
    A. I. Vogel, ‘Textbook of Quantitative Inorganic Analysis’, 4th edn., Longmans, London (1978).Google Scholar
  30. [30]
    M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’, National Association Corrosion Engineers, Houston, USA (1974).Google Scholar
  31. [31.
    H. Vogt,Electrochim. Acta 26 (1981) 1311.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • G. H. Kelsall
    • 1
  1. 1.Electricity Council Research CentreCapenhurstUK

Personalised recommendations