Journal of Applied Electrochemistry

, Volume 14, Issue 2, pp 165–175 | Cite as

The mechanism of oxidation of copper in alkaline solutions

  • M. R. Gennero De Chialvo
  • S. L. Marchiano
  • A. J. Arvía


The formation of Cu2O by the oxidation of Cu in alkaline solutions under various controlled potential conditions has been studied by potentiodynamic methods, the rotating ring disc technique and by employing colloidal Cu(OH)2 electrodes supported on vitreous carbon.

The kinetics of the electrochemical reactions, both anodic and cathodic, are interpreted in terms of a complex reaction mechanism involving various intermediates participating in the phase oxide formation, (e.g. adsorbed OH, soluble Cu(I) and metal sites of different activity).

Besides the electrochemical reactions the model includes various ageing and surface restructuring processes. The growth mechanism is envisaged to depend on the conditions of oxidation.


Reaction Mechanism Cu2O Alkaline Solution Growth Mechanism Electrochemical Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Miller,J. Electrochem. Soc. 116 (1969) 1675.Google Scholar
  2. [2]
    M. J. Dignam and D. B. Gibbs,Can. J. Chem. 48 (1970) 1242.Google Scholar
  3. [3]
    N. A. Hampson, J. B. Lee and K. I. MacDonald,J. Electroanal. Chem. 32 (1971) 165.Google Scholar
  4. [4]
    J. Ambrose, R. G. Barradas and D. W. Shoesmith,ibid. 47 (1973) 47.Google Scholar
  5. [5]
    D. W. Shoesmith, T. E. Rummery, D. Owen and W. Lee,J. Electrochem. Soc. 123 (1976) 790.Google Scholar
  6. [6]
    V. Ashworth and D. Fairhurst,ibid. 124 (1977) 506.Google Scholar
  7. [7]
    A. M. Castro Luna de Medina, S. L. Marchiano and A. J. Arvia,J. Appl. Electrochem. 8 (1978) 121.Google Scholar
  8. [8]
    S. Fletcher, R. G. Barradas and J. D. Porter,J. Electrochem. Soc. 125 (1978) 1960.Google Scholar
  9. [9]
    M. Yamashita, K. Omura and D. Hirayama,Surf. Sci. 96 (1980) 443.Google Scholar
  10. [10]
    S. L. Marchiano, C. I. Elsner and A. J. Arvia,J. Appl. Electrochem. 10 (1980) 365.Google Scholar
  11. [11]
    J. M. M. Droog, C. A. Alderliesten, P. T. Alderleisten and G. A. Bootsma,J. Electrochem. Soc. 111 (1980) 65.Google Scholar
  12. [12]
    M. E. Martins and A. J. Arvia,J. Electroanal. Chem. in press.Google Scholar
  13. [13]
    M. R. Gennero de Chialvo, S. L. Marchiano and A. J. Arvia, in preparation.Google Scholar
  14. [14]
    K. Hauffe, ‘Oxidation of Metals’, Plenum Press, New York (1965).Google Scholar
  15. [15]
    J. M. M. Droog and B. Schleuter,J. Electroanal. Chem. 112 (1980) 387.Google Scholar
  16. [16]
    A. J. Arvía, Proceedings 8th International Congress of Metallic Corrosion, Vol. III, Mainz, Germany, September 1981, p. 2065.Google Scholar
  17. [17]
    J. O'M. Bockris and E. Buck, ‘Structure and Properties of Metal Surfaces’, Maruzen Co., Tokyo (1973).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • M. R. Gennero De Chialvo
    • 1
  • S. L. Marchiano
    • 1
  • A. J. Arvía
    • 1
  1. 1.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasINIFTALa PlataArgentina

Personalised recommendations