Transition Metal Chemistry

, Volume 7, Issue 6, pp 306–310 | Cite as

Copper(II) complexes of 2-amino-1,3,4-thiadiazole and 2-ethylamino-1,3,4-thiadiazole

  • Antonio C. Fabretti
  • Gian Carlo Franchini
  • Giorgio Peyronel
Full Papers


Some copper(II) complexes of 2-amino-1,3,4-thiadiazole (atz) and 2-ethylamino-1,3,4-thiadiazole (eatz) have been prepared and studied by electronic, i.r. and e.p.r. spectra and by magnetochemical and conductometric methods. The CuX2 · atz (X=Cl, Br) and CuCl2 · eatz complexes are presumably six-coordinate with bridging ligand molecules and asymmetrically bridging halide ions, while the CuX2 · 2 atz (X=Cl, Br) complexes probably have a flattened tetrahedral N2X2 moiety with apical interactions. The CuBr2 · 5/3 eatz · 2/3 MeOH and Cu(OAc)2 · L (L=atz or eatz) complexes have subnormal magnetic moments (1.53-1.40 B.M.). The acetato-complexes have a dimeric structure with bridging acetato-groups, copper-copper interactions and apical ligand molecules. The ligands bond principally through the amine nitrogen atom and, when bridging, also through one ring-nitrogen.


Nitrogen Copper MeOH Nitrogen Atom Halide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. M. Ciotti, S. R. Humphreys, J. M. Venditti, N. O. Kaplan and A. Goldin,Cancer Research, 20, 1195 (1960).Google Scholar
  2. (2).
    E. Testa, G. G. Gallo, F. Fava and G. Weber,Gazz. Chim. Ital., 88, 812 (1958).Google Scholar
  3. (3).
    A. C. Fabretti, G. Peyronel and G. C. Franchini,Inorg. Chim. Acta, 35, 49 (1979).Google Scholar
  4. (4).
    N. B. Singh, J. Singh and K. K. Pathak,Transition Met. Chem., 5, 60 (1980).Google Scholar
  5. (5).
    N. B. Singh and J. Singh,J. Inorg. Nucl. Chem., 41, 1384 (1979).Google Scholar
  6. (6).
    N. B. Singh and J. Singh,Indian J. Chem., 15A, 832 (1977).Google Scholar
  7. (7).
    M. R. Gajendragad and U. Agarwala,J. Inorg. Nucl. Chem., 37, 2429 (1975).Google Scholar
  8. (8).
    M. R. Gajendraged and U. Agarwala,Bull. Chem. Soc. Jpn., 48, 1024 (1975).Google Scholar
  9. (9).
    A. R. Katritzky,Physical Methods in Heterocyclic Chemistry, Vol. II, pp. 232–234, Academic Press, New York, 1963.Google Scholar
  10. (10).
    P. D. Singh, N. N. Jha and L. K. Mishra,J. Inorg. Nucl. Chem., 42, 282 (1980).Google Scholar
  11. (11).
    B. K. Singh, R. Singh and J. P. Srivastava,J. Inorg. Nucl. Chem., 39, 1797 (1977).Google Scholar
  12. (12).
    P. P. Singh, O. P. Agrawal and A. K. Gupta,Inorg. Chim. Acta, 18, 19 (1976).Google Scholar
  13. (13).
    C. N. R. Rao,Chemical Applications of Infrared Spectroscopy, p. 251, 297, Academic Press, New York, 1963.Google Scholar
  14. (14).
    J. R. Ferraro,Low-Frequency Vibrations of Inorganic and Coordination Compounds, pp. 162, 219, Plenum Press, New York, 1971.Google Scholar
  15. (15).
    M. R. Gajendragad and U. Agarwala,Indian J. Chem., 13, 1331 (1975).Google Scholar
  16. (16).
    F. A. Cotton and G. Wilkinson,Advanced Inorganic Chemistry, Interscience, New York, 1972.Google Scholar
  17. (17).
    A. B. P. Lever and E. Mantovani,Inorg. Chim. Acta, 5, 429 (1971).Google Scholar
  18. (18).
    M. J. Campbell, R. Grzeskoviak and M. Goldstein,Spectrochim. Acta, 24A, 1149 (1968).Google Scholar
  19. (19).
    M. J. Campbell, M. Goldstein and R. Grzeskoviak,Chem. Comm., 778 (1967).Google Scholar
  20. (20).
    M. Goldstein and E. F. Mooney,Spectrochim. Acta, 21, 105 (1965).Google Scholar
  21. (21).
    A. B. P. Lever,Inorganic Electronic Spectroscopy, p. 324, 334, 359 Elsevier, Amsterdam, 1968.Google Scholar
  22. (22).
    R. B. Wilson, J. R. Wasson, W. E. Hatfield and D. J. Hodgson,Inorg. Chem., 17, 641 (1978).Google Scholar
  23. (23).
    R. C. Rosenberg, C. A. Root, P. K. Bernstein and H. B. Gray,J. Am. Chem. Soc., 97, 2092 (1975).Google Scholar
  24. (24).
    I. R. Wasson, C. I. Shyr and C. Trapp,Inorg. Chem., 7, 469 (1968).Google Scholar
  25. (25).
    D. A. Baldwin, A. B. P. Lever and R. V. Parish,Inorg. Chem., 8, 107 (1969).Google Scholar
  26. (26).
    D. Hibdon and J. H. Nelson,Inorg. Chim. Acta, 7, 629 (1975).Google Scholar
  27. (27).
    M. Kato, H. B. Jonassen and J. C. Fanning,Chem. Rev., 64, 99 (1964).Google Scholar
  28. (28).
    C. Oldham,Progr. Inorg. Chem., 10, 223 (1968).Google Scholar
  29. (29).
    G. Davey and F. S. Stephens,J. Chem. Soc. (A), 2803 (1970).Google Scholar
  30. (30).
    W. Harrison, S. Rettig and J. Trotter,J. Chem. Soc., Dalton Trans., 1852 (1972).Google Scholar
  31. (31).
    J. Catterick and P. Thornton,Adv. Inorg. Chem. Radiochem., 20, 291 (1977).Google Scholar
  32. (32).
    B. Bleaney and K. D. Bower,Proc. Roy. Soc. (London), A214, 451 (1952).Google Scholar
  33. (33).
    E. Kokot and R. L. Martin,Inorg. Chem., 3, 1306 (1964).Google Scholar

Copyright information

© Verlag Chemie GmbH 1982

Authors and Affiliations

  • Antonio C. Fabretti
    • 1
  • Gian Carlo Franchini
    • 1
  • Giorgio Peyronel
    • 1
  1. 1.Istituto di Chimica Generale e InorganicaUniversity of ModenaModenaItaly

Personalised recommendations