Advertisement

Transition Metal Chemistry

, Volume 4, Issue 5, pp 305–307 | Cite as

One-dimensional magnetism and crystal structure ofcatena-di-bromobis(3,5-dimethylpyridine)copper(II)

  • Johannes A. C. van Ooijen
  • Jan Reedijk
  • Eduard J. Sonneveld
  • Jan W. Visser
Full Papers

Summary

Crystals ofcatena-di-μ-bromobis(3,5-dimethylpyridine)copper(II) are monoclinic, space group P21/a. The unit cell constants area=13.900(2),b=14.416(2),c=4.097(1) Å,β=93.49(2)°, V=819.4 Å3 and Z=2. The structure was determined from powder data using a Guinier-Johansson focussing powder camera. The structure was solved using a simplex method for function minimization to a conventional R-value of 0.13.

The structure consists of infinite linear chains parallel toc in which the copper coordination is distorted elongated octahedral. Cu-Br distances were found to be 2.449(7) and 3.286(7) Å, whereas the Cu-N bond length is 2.02(2) Å. All distances are in the range usually observed for this type of compounds.

The antiferromagnetic superexchange interactions between adjacent CuII ions (J = −21 cm−1) has been compared with those observed in structural similar CuBr2L2 compounds. The differences in observed J-values are discussed briefly, in relation to the structural variations. It appears that very small changes in structural parameters strongly affect the magnetic exchange.

Keywords

Linear Chain Simplex Method Function Minimization Cell Constant Magnetic Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    W. E. Estes, D. P. Gavel, W. E. Hatfield and D. J. Hodgson,Inorg. Chem., 17, 1415 (1978).Google Scholar
  2. (2).
    V. H. Crawford and W. E. Hatfield,Inorg. Chem., 16, 1336 (1977).Google Scholar
  3. (3).
    J. A. C. van Ooijen and J. Reedijk,Inorg. Chim. Acta, 25, 131 (1977).Google Scholar
  4. (4).
    J. A. C. van Ooijen and J. Reedijk,J. Chem. Soc. Dalton Trans., 1170 (1978).Google Scholar
  5. (5).
    B. Morosin,Acta Crystallogr., B31, 632 (1975).Google Scholar
  6. (6).
    M. Laing and E. Horsfield,Chem. Comm., 9735 (1968).Google Scholar
  7. (7).
    M. Laing and G. Carr,J. Chem. Soc. A, 1141 (1971).Google Scholar
  8. (8).
    J. C. Jansen, H. van Koningsveld and J. A. C. van Ooijen,Cryst. Struct. Comm., in press.Google Scholar
  9. (9).
    J. A. C. van Ooijen and J. Reedijk,J. Magn. and Magn. Mat., 7, 637 (1978).Google Scholar
  10. (10).
    V. H. Crawford, H. W. Richardson, J. R. Wasson, D. J. Hodgson and W. E. Hatfield,Inorg. Chem., 15, 2107 (1976).Google Scholar
  11. (11).
    E. J. Sonneveld and J. W. Visser,J. Appl. Crystallogr., 8, 1 (1975);Google Scholar
  12. (12).
    J. W. Visser,J. Appl. Crystallogr., 2, 89 (1969).Google Scholar
  13. (13).
    W. Stählin and H. R. Oswald,Acta Crystallogr., B27, 1368 (1971).Google Scholar
  14. (14).
    International Tables, part IV, Table 2.2B, 1974.Google Scholar
  15. (15).
    J. A. Nelder and R. Mead,Comput. J., 8, 308 (1965).Google Scholar
  16. (16).
    XRAY system-version of June 1972, technical report TR-192 of the computer science center,University of Maryland, June 1972.Google Scholar
  17. (17).
    A. P. Ginsberg,Inorg. Chim. Acta Rev., 5, 45 (1971).Google Scholar

Copyright information

© Verlag Chemie, GmbH 1979

Authors and Affiliations

  • Johannes A. C. van Ooijen
    • 1
  • Jan Reedijk
    • 1
  • Eduard J. Sonneveld
    • 2
  • Jan W. Visser
    • 2
  1. 1.Department of ChemistryDelft University of TechnologyGA DelftThe Netherlands
  2. 2.Technisch Physische Dienst TNO-THAD DelftThe Netherlands

Personalised recommendations