Journal of Superconductivity

, Volume 4, Issue 1, pp 57–60 | Cite as

Proton-induced reduction ofRs, Jc, andTc in YBa2Cu3O7−δ thin films

  • D. B. Chrisey
  • J. S. Horwitz
  • H. S. Newman
  • M. E. Reeves
  • B. D. Weaver
  • K. S. Grabowski
  • G. P. Summers
Article

Abstract

We have explored the effect of 2-MeVH+ irradiation on the superconducting transport properties of thin films of YBa2Cu3O7−δ [Tc, Jc(B=0; 77 K, 4.2 K), andRs(36 GHz;T)]. The inductively measured critical temperatureTc changed slowly and uniformly (∼2 K per 1016/cm2) for fluences less than ∼3×1016/cm2. Beginning at ∼3–4×1016/cm2, the superconducting transition broadened and dropped more quickly with fluence. The critical current density measured at 77 and 4.2 K changed roughly linearly with fluence. The microwaveTc (as defined by the sharp transition inRs as a function of temperature) resembled the low-frequency inductiveTc measurement at low fluences but was depressed more strongly for large fluences. The residual surface resistance (∼6–10 mΩ) was not affected for fluences up to 5×1016/cm2. We have interpreted the sudden and reproducible reduction in the microwaveTc transition as a sensitive indicator of disruption in the copper-oxygen chain sublattice and compared the proton-induced change to that observed in oxygen gettering studies of bulk materials.

Key words

Thin films radiation damage surface resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. P. Summers, E. A. Burke, D. B. Chrisey, M. Nastasi, and J. R. Tesmer,Appl. Phys. Lett. 55. 1469 (1989).Google Scholar
  2. 2.
    J. H. Ciaassen,IEEE Trans. Mag. 25, 2233 (1989); M. E. Reeves and J. H. Claassen, accepted for publication,Rev. Sci. Instr. (1991).Google Scholar
  3. 3.
    A. Inam, X. D. Wu, L. Nazar, M. S. Hegde, C. T. Rogers, T. Venkatesan, R. W. Simon, K. Daly, H. Padamsee, J. Kirchgessner, D. Moffat, D. Rubin, Q. S. Shu, D. Kalokitis, A. Fathy, V. Pendrick, R. Brown, B. Brycki, E. Belohoubek, L. Drabek, G. Gruner, R. Hammond, F. Gamble, B. M. Lairson, and J. C. Bravman,Appl. Phys. Lett. 56, 1178 (1990).Google Scholar
  4. 4.
    A. E. White, K. T. Short, R. C. Dynes, A. F. J. Levi, M. Anzlowar, K. W. Baldwin, P. A. Polakos, T. A. Fulton, and L. N. Dunkleberger,Appl. Phys. Lett. 53, 1010 (1988).Google Scholar
  5. 5.
    B. Roas, B. Hensel, G. Saemann-Ischenko, and L. Shultz,Appl. Phys. Lett. 54, 1051 (1989).Google Scholar
  6. 6.
    H. S. Newman, A. K. Singh, K. Sadananda, and M. A. Imam,Appl. Phys. Lett. 54, 389 (1989).Google Scholar
  7. 7.
    R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak, and D. J. Werder,Nature (London) 329, 423 (1987).Google Scholar
  8. 8.
    A. D. Marwick, C. R. Guarnieri, and J. M. Manoyan,Appl. Phys. Lett. 53, 2713 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • D. B. Chrisey
    • 1
  • J. S. Horwitz
    • 1
  • H. S. Newman
    • 1
  • M. E. Reeves
    • 1
  • B. D. Weaver
    • 1
  • K. S. Grabowski
    • 1
  • G. P. Summers
    • 1
  1. 1.Naval Research LaboratoryWashington, D. C.

Personalised recommendations