Advertisement

Journal of Comparative Physiology A

, Volume 157, Issue 3, pp 375–381 | Cite as

Chains of single-domain magnetite particles in chinook salmon,Oncorhynchus tshawytscha

  • J. L. Kirschvink
  • M. M. Walker
  • S. -B. Chang
  • A. E. Dizon
  • K. A. Peterson
Article

Summary

Although the presence of magnetite in their tissues is correlated with the ability of different species to detect magnetic fields, proof that the magnetite is involved in magnetoreception has not yet been provided. Using the approach employed to localize and isolate magnetic particles in the yellowfin tuna, we found that single-domain magnetite occurs in chains of particles in tissue contained within the dermethmoid cartilage of adult chinook salmon,Oncorhynchus tshawytscha. The particles are present in sufficient numbers to provide the adult fish with a very sensitive magnetoreceptor system. Magnetite in the chinook can be correlated with responses to magnetic fields in a congeneric species, the sockeye salmon. Based on the presence of the chains of particles, we propose behavioral experiments that exploit the responses of sockeye salmon fry to magnetic fields to test explicit predictions of the ferromagnetic magnetoreception hypothesis.

Keywords

Magnetic Field Magnetite Magnetic Particle Chinook Salmon Behavioral Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker RR, Mather JG, Kennaugh JH (1983) Magnetic bones in human sinuses. Nature 301:78–80Google Scholar
  2. Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408Google Scholar
  3. Beason RC, Nicholls JC (1984) Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309:151–153Google Scholar
  4. Brannon EL (1972) Mechanisms controlling migration of sockeye salmon fry. Int Pac Sal Fish Comm Bull 21:1–86Google Scholar
  5. Branover GG, Vasil'yev AS, Gleyzer SI, Tsinober AB (1971) A study of the behavior of the eel in natural and artificial magnetic fields and an analysis of its reception mechanism. J Ichthyol 11:608–614Google Scholar
  6. Butler RF, Banerjee SK (1975) Theoretical single-domain size in magnetite and titanomagnetite. J Geophys Res 80:4049–4058Google Scholar
  7. Cisowski S (1981) Interacting vs non-interacting single-domain behavior in natural and synthetic samples. Phys Earth Planet Interiors 26:56–62Google Scholar
  8. Dunlop DJ, West GF (1969) An experimental evaluation of single-domain theories. Rev Geophys 7:709–757Google Scholar
  9. Furth HP, Waniek RW (1956) Production and use of high transient magnetic fields. Rev Sci Instr 27:195–203Google Scholar
  10. Goree WS, Fuller M (1976) Magnetometers using RF-driven SQUIDS and their applications in rock magnetism and paleomagnetism. Rev Geophys Space Phys 14:591–608Google Scholar
  11. Gould JL (1982) The map sense of pigeons. Nature 296:205–211Google Scholar
  12. Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028Google Scholar
  13. Hanson M, Karlsson L, Westerberg H (1984a) Magnetic material in European eel, (Anguilla anguilla L.). Comp Biochem Physiol 77A:221–224Google Scholar
  14. Hanson M, Wirmark G, Oblad M, Strid L (1984b) Iron-rich particles in European eel (Anguilla anguilla L.). Comp Biochem Physiol 79A:311–316Google Scholar
  15. Hudspeth AJ (1983) Mechanoelectrical transduction by haircells in the acousticolateralis sensory system. Annu Rev Neurosci 6:187–216Google Scholar
  16. Kalmijn AJ (1981) Biophysics of geomagnetic field detection. IEEE Trans Mag 17:1113–1124Google Scholar
  17. Kirschvink JL (1979) PhD Thesis. Princeton University. Xerox Univ Microfilms Internat, NYGoogle Scholar
  18. Kirschvink JL (1981) The horizontal magnetic dance of the honeybee is compatible with a single-domain ferromagnetic magnetoreceptor. Biosystems 14:193–203Google Scholar
  19. Kirschvink JL (1983) Biogenic ferrimagnetism: A new biomagnetism. In: Williamson SJ, Romani G-L, Kaufman L, Modena I (eds) Biomagnetism: An interdisciplinary approach. NATO Adv Study Inst Ser, Plenum Publ Corp, New York, pp 501–531Google Scholar
  20. Kirschvink JL, Gould JL (1981). Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:181–201Google Scholar
  21. Kirschvink JL, Walker MM (in press) Particle-size considerations for magnetite-based magnetoreceptors. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in living organisms: A new biomagnetism. Plenum Publ Corp, New YorkGoogle Scholar
  22. Lindauer M, Martin H (1972) Magnetic effect on dancing bees. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientation and navigation. Nat Aeronaut Space Adminstr, Special Publ 262, Washington DC USAGoogle Scholar
  23. Lins De Barros HGP, Esquivel DMS, Danon J, De Oliveira LPH (1981) Magnetotactic algae. Acad Brasileria Notas de Fisica CBPF-NF-48Google Scholar
  24. Mather JG, Baker RR (1981) Magnetic sense of direction in woodmice for route-based navigation. Nature 291:152–155Google Scholar
  25. McElhinny MW (1973) Paleomagnetism and plate tectonics. Cambridge Univ Press, London New YorkGoogle Scholar
  26. Perry A, Bauer GB, Dizon AE (in press) Magnetoreception and biomineralization of magnetite in amphibians and reptiles. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in living organisms: A new biomagnetism. Plenum Publ Corp, New YorkGoogle Scholar
  27. Presti D, Pettigrew JD (1980) Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals. Nature 285:99–101Google Scholar
  28. Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake-migrating sockeye salmon fry. J Comp Physiol 137:243–248Google Scholar
  29. Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol 147:547–552Google Scholar
  30. Quinn TP, Merrill RT, Brannon EL (1981) Magnetic field detection in sockeye salmon. J Exp Zool 217:137–142Google Scholar
  31. Towe KM, Moench TT (1981) Electron-optical characterization of bacterial magnetite. Earth Planet Sci Letters 52:213–220Google Scholar
  32. Vilches-Troya J, Dunn RF, O'Leary DP (1984) Relationship of the vestibular hair cells to magnetic particles in the otolith of the guitarfish sacculus. J Comp Neurol 226:489–494Google Scholar
  33. Walcott C (1980) Magnetic orientation in homing pigeons. IEEE Trans Magn 16:1008–1013Google Scholar
  34. Walcott C, Green RP (1974) Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184:180–182Google Scholar
  35. Walcott C, Gould JL, Kirschvink JL (1979) Pigeons have magnets. Science 205:1027–1029Google Scholar
  36. Walker MM (1984) Learned magnetic field discrimination in yellowfin tuna,Thunnus albacares. J Comp Physiol A 155:673–679Google Scholar
  37. Walker MM, Kirschvink JL, Chang RS-B, Dizon AE (1984) A candidate magnetoreceptor organ in the yellowfin tuna,Thunnus albacares. Science 224:751–753Google Scholar
  38. Walker MM, Perry A, Dizon AE, Kirschvink JL (in press) Detection, extraction, and characterization of biogenic magnetite. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in living organisms: A new biomagnetism. Plenum Publ Corp, New YorkGoogle Scholar
  39. Yorke ED (1979) A possible magnetic transducer in birds. J Theor Biol 77:101–105Google Scholar
  40. Yorke ED (1981) Sensitivity of pigeons to small magnetic field variations. J Theor Biol 89:533–537Google Scholar
  41. Zoeger J, Dunn J, Fuller M (1981) Magnetic material in the head of a common Pacific dolphin. Science 213:892–894Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. L. Kirschvink
    • 1
  • M. M. Walker
    • 2
  • S. -B. Chang
    • 1
  • A. E. Dizon
    • 3
  • K. A. Peterson
    • 1
  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Southwest Fisheries Center Honolulu LaboratoryNational Marine Fisheries Service, NOAAHonoluluUSA
  3. 3.Southwest Fisheries Center La Jolla LaboratoryNational Marine Fisheries Service, NOAALa JollaUSA

Personalised recommendations