Journal of Comparative Physiology A

, Volume 157, Issue 3, pp 311–321 | Cite as

Natural phototaxis and its relationship to colour vision in honeybees

  • R. Menzel
  • U. Greggers


  1. 1.

    Honeybees are positively phototactic when they leave a feeding place and start to fly back to the hive. The strength of this natural phototactic response in individually marked bees was measured without interfering with their foraging behaviour.

  2. 2.

    Absolute sensitivity of this phototactic response to a point light source is in the range of 8.3 · 107 quanta s−1 for 537 nm. This corresponds to about 5 absorbed quanta in 28 green receptors over the integration time of 60 ms.

  3. 3.

    We conclude that the properties of the monopolar cells or higher order visual interneurons rather than those of the photoreceptors control the intensity dependence of the response because the slopes (n) of the response intensity functions (R/logI) are steep (n: 1.0–2.65) and wavelength dependent. Blue light (439 nm) causes the steepest function.

  4. 4.

    The effect of residual light adaptation on theR/logI-function and the spectral sensitivity (S(λ)) is negligible under the experimental conditions chosen, since the time course of dark adaptation is fast (τ≦1 min).

  5. 5.

    The blue and green receptors contribute about equally to theS(λ) of this natural phototactic response, the UV receptors somewhat less (Fig. 5).

  6. 6.

    Colour mixing experiments, used to test colour vision in phototaxis, reveal no significant deviation from a simple linear summation of the quantal fluxes, irrespective of the spectral mixture used. We conclude, therefore, that under the experimental conditions colour vision is very unlikely to play a role in the phototactic behaviour of the honeybee.

  7. 7.

    All our results (steepR/logI-functions, fast dark adaptation,S(λ) and the absence of colour vision) support to notion that the natural phototactic response is controlled by neuronal pooling, most likely in the lamina M1 monopolar cells.



Dark Adaptation Colour Vision Condition Colour Light Adaptation Quantal Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum H, Seibt U (1965) Die Dunkeladaptation des Bienenauges. Naturwissenschaften 52:566Google Scholar
  2. Autrum H, Zwehl V von (1964) Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol 48:357–384Google Scholar
  3. Baumgärtner H (1928) Der Formensinn und die Sehschärfe der Bienen. Z. vergl. Physiol 7:56–143Google Scholar
  4. Baylor DA, Fuortes MGF (1970) Electrical responses of single cones in the retina of the turtle. J Physiol 207:77–92Google Scholar
  5. Bertholf LM (1931 a) Reactions of the honey bee to light. J Agr Res 42:379–419Google Scholar
  6. Bertholf LM (1931 b) The distribution of stimulative efficiency in the ultraviolet spectrum for the honey bee. J Agric Res 43:703–713Google Scholar
  7. Brines ML, Gould JL (1979) Bees have rules. Science 206:571–573Google Scholar
  8. Coombe P (1981) Wavelength specific behaviour of the white flyTrialeurodes vaporariorum (Homoptera, Aleyrodidae). J Comp Physiol 144:83–90Google Scholar
  9. Daumer K (1956) Reizmetrische Untersuchungen des Farbfernsehens der Bienen. Z vergl Physiol 38:413–478Google Scholar
  10. Edrich W (1977) Die Rolle einzelner Farbrezeptoren bei den verschiedenen Lichtreaktionen der Biene. Verh Dtsch Zool Ges 70:236Google Scholar
  11. Edrich W, Neumeyer Ch, Helversen O von (1979) ‘Anti-sun orientation’ of bees with regard to a field of ultraviolet light. J Comp Physiol 134:151–157Google Scholar
  12. Fischbach KF (1979) Simultaneous and successive colour contrast expressed in ‘slow’ phototactic behaviour of walkingDrosophila melanogaster. J Comp Physiol 130:161–171Google Scholar
  13. Frisch K von (1914) Der Farbensinn und Formensinn der Biene. Zool J Physiol 37:1–238Google Scholar
  14. Frisch K von (1967) The dance language and orientation of bees. Cambridge University Press, CambridgeGoogle Scholar
  15. Goldsmith TH (1963) The course of light and dark adaptation in the compound eye of the honey bee. Comp Biochem Physiol 10:227–237Google Scholar
  16. Heintz E (1959) La question de la sensibilité des abeilles a l'ultraviolet. Insect Soc 6:223–229Google Scholar
  17. Helverson O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472Google Scholar
  18. Helversen O von, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: Ein Ultraviolettrezeptor. J Comp Physiol 94:33–47Google Scholar
  19. Henderson ST (1970) Daylight and its spectrum. Adam Hilger, LondonGoogle Scholar
  20. Kaiser W (1974) The spectral sensitivity of the honey bee's optomotor walking response. J Comp Physiol 90:405–408Google Scholar
  21. Kaiser W, Liske E (1974) Optomotor reactions of stationary flying bees during stimulation with spectral light. J Comp Physiol 89:391–408Google Scholar
  22. Kaiser W, Seidl R, Vollmar J (1977) The participation of all three colour receptors in the phototactic behaviour of fixed walking honey bees. J Comp Physiol 122:27–44Google Scholar
  23. Kindermann U (1983) Verlauf der Dunkeladaptation bei der Honigbiene, gemessen mit ERG-Ableitungen und in Phototaxisexperimenten. Examensarbeit, Freie Universittät BerlinGoogle Scholar
  24. Kirschfeld K (1984) Linsen und Komplexaugen: Grenzen ihrer Leistung. Naturwiss Rundschau 37:352–362Google Scholar
  25. Labhart T (1974) Behavioural analysis of light intensity discrimination and spectral sensitivity in honeybeesApis mellifera. J Comp Physiol 95:203–216Google Scholar
  26. Laughlin SB (1981) Neural principles in the peripheral visual system of invertebrates. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 133–280Google Scholar
  27. Laughlin SB, Horridge GA (1971) Angular sensitivity of the retinula cells of dark adapted worker bees. Z Vergl. Physiol 74:329–335Google Scholar
  28. Lieke E (1984) Farbensehen bei Bienen: Wahrnehmung der Farbsättigung. Dissertation, Freie Universität BerlinGoogle Scholar
  29. Lipetz LE (1971) The relation of physiological and psychological aspects of sensory intensity. In: Lowenstein WR (ed), Principles of receptor physiology (Handbook of sensory physiology, vol I Springer, Berlin Heidelberg New York, pp 191–225Google Scholar
  30. Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene,Apis mellifica. Z Vergl Physiol 56:22–62Google Scholar
  31. Menzel R (1974) Spectral sensitivity of monopolar cells in the bee lamina. J Comp Physiol 93:337–346Google Scholar
  32. Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed), Vision in invertebrates (Handbook of sensory physiology, vol VII/6A), Springer, Berlin Heidelberg New York, pp 504–566Google Scholar
  33. Menzel R (1981) Achromatic vision in the honeybee at low light intensities. J Comp Physiol 141:389–393Google Scholar
  34. Menzel R (1985) Learning in honeybees in an ecological and behavioural context. In: Lindauer M, Hölldobler B (eds) Experimental behavioural ecology, Fortschr Zool 31:Google Scholar
  35. Menzel R, Blakers M (1976) Colour receptors in the bee eye — morphology and spectral sensitivity. J Comp Physiol 108:11–33Google Scholar
  36. Menzel R, Greggers U (1983) Automated behavioural experiments with individually marked bees. Behav Res Meth Instr 15:569–573Google Scholar
  37. Portillo J del (1936) Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihren funktionellen Aufgaben. Z Vergl Physiol 23:145Google Scholar
  38. Raggenbass M (1983) Effects of extracellular calcium and of light adaptation on the response to dim light in honey bee drone photoreceptors. J Physiol 344:525–548Google Scholar
  39. Reichardt W (1969) Transduction of single-quantum effects (Evidence from behavioral experiments on the flyMusca). In: Proceedings of the Intern. School of Physics “Enrico Fermi” Course XLIII, Processing of Optical Data by Organisms and by Machines, Academic Press, New York London, pp 176–186Google Scholar
  40. Ribi WA (1976) The first optic ganglion of the bee. II. Topographical relationship of the monopolar cells within and between cartridges. Cell Tissue Res 171:359–373Google Scholar
  41. Rodieck RW (1973) The vertebrate retina. Freeman Co., San FranciscoGoogle Scholar
  42. Rose R, Menzel R (1981) Luminance dependence of pigment color discrimination in bees. J Comp Physiol 141:379–388Google Scholar
  43. Rushton WAH (1972) Pigments and signals in colour vision. J Physiol (Lond) 220:1–31Google Scholar
  44. Sander W (1933) Phototaktische Reaktionen der Bienen auf Lichter verschiedener Wellenlängen. Z Vergl Physiol 20:267–256Google Scholar
  45. Seliger HH, McElroy WD (1965) Light: Physical and biological action. Academic Press, New YorkGoogle Scholar
  46. Thomas I, Autrum H (1965) Die Empfindlichkeit der dunkelund helladaptierten Biene (Apis mellifica) für spektrale Farben: Zum Purkinje-Phänomen der Insekten. Z Vergl Physiol 51:204–218Google Scholar
  47. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6C) Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  48. Weiss HB (1943) Colour perception in insects. J Econ Entomol 36:1–17Google Scholar
  49. Wolf E, Zerrahn-Wolf G (1935) The dark adaptation of the eye of the honey bee. J Gen Physiol 19:229–237Google Scholar
  50. Wu CF, Pak WL (1978) Light-induced voltage noise in the photoreceptor ofDrosophila melanogaster. J Gen Physiol 71:249–268Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Menzel
    • 1
  • U. Greggers
    • 1
  1. 1.Institut für Tierphysiologie - NeurobiologieFreie Universität BerlinBerlin 33

Personalised recommendations