Skip to main content
Log in

Vacancy-impurity interaction in dilute iron alloys by positron annihilation

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Positron annihilation measurements of the coincidence count rate at the peak of the angular correlation curve (CCR) have been performed as a function of temperature for the alloy systemFeTi in a concentration range up to about 1.3 at. %. The concentration dependence of the effective vacancy formation enthalpy (H F1V )eff suggests the existence of an attractive interaction between vacancies and the impurity atoms. It will be shown that the description of the vacancy concentration in an alloy according to the Lomer model is not valid in this case, because it neglects binding of vacancies to solute atom pairs and to higher agglomerates. The application of a model proposed by Dorn and Mitchell gives evidence that beyond the binding of a vacancy to a single solute atom in the concentration range investigated also aggregates of a vacancy bound to two and three foreign atoms must be taken into account. The analysis of the measurements according to the method of Hehenkamp and Sander gives values for the respective vacancy-solute-atom(s) binding enthalpies H B1 =0.25eV, H B2 =0.53eV and H B3 =0.91eV. The discussion of the temperature and solute-atoms concentration dependence of the vacancy concentration suggests a much more complicated behaviour than for pure metals even at low solute-atom concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Triftshäuser: “Positron Studies in Metals”. InFestkörperprobleme (Advances in Solid State Physics), Vol. 15, ed. by H.J. Queisser (Pergamon Press/Vieweg, Braunschweig, 1975) p. 381

    Google Scholar 

  2. R.W. Balluffi: J. Nucl. Mater.69 and70, 240 (1978)

    Google Scholar 

  3. S. Mantl: Private communication

  4. H. Matter, J. Winter, W. Triftshäuser: Appl. Phys.20 135 (1979)

    Google Scholar 

  5. H. Matter, J. Winter, W. Triftshäuser: J. Nucl. Mater.88, 273 (1980)

    Google Scholar 

  6. S. Berko, J. Mader: Appl. Phys.5, 287 (1975)

    Google Scholar 

  7. C.L. Snead, Jr., Th. M. Hall, A.N. Goland: Phys. Rev. Lett.29, 62 (1972)

    Google Scholar 

  8. M. Doyama, S. Tanigawa, K. Kuribayashi, S. Nanao: Cryst. Lattice Defects4, 255 (1973)

    Google Scholar 

  9. M. Doyama, K. Kuribayashi, S. Nanao, S. Tanigawa: Appl. Phys.4, 153 (1974)

    Google Scholar 

  10. O. Sueoka: J. Phys. Soc. Jpn.39, 969 (1975)

    Google Scholar 

  11. W.M. Lomer: Monogr. Ser. Inst. Metals23, 85 (1958)

    Google Scholar 

  12. F.W. Schapink: Acta Met.14, 1130 (1966)

    Google Scholar 

  13. J.E. Dorn, J.B. Mitchell: Acta Metall.14, 70 (1966)

    Google Scholar 

  14. A. Blandin, J.L. Deplanté, J. Friedel: J. Phys. Soc. Jpn.18, 85 (1963)

    Google Scholar 

  15. J. Burke: J. Less-Common Met.28, 441 (1972)

    Google Scholar 

  16. Th. Hehenkamp, L. Sander: Z. Metallkunde70, 202 (1979)

    Google Scholar 

  17. B. Bergersen, M.J. Stott: Solid State Commun.7, 1203 (1969)

    Google Scholar 

  18. D.C. Connors, R.N. West: Phys. Lett. A30, 24 (1969)

    Google Scholar 

  19. P. Hautojärvi, T. Judin, A. Vehanen, J. Yli-Kauppila, J. Johansson, J. Verdone, P. Moser: Solid State Commun.29, 855 (1979)

    Google Scholar 

  20. Thermophysical Properties of Matter, Vol. 12, ed. by Y.S. Touloukian, R.B. Kirby, R.E. Taylor, P.D. Desai (Plenum Press, New York 1975)

    Google Scholar 

  21. D.G. Lock, R.N. West: J. Phys. F4, 2179 (1974)

    Google Scholar 

  22. M. Hansen, K. Anderlo:Constitution of Binary Alloys (McGraw-Hill, New York, London 1958)

    Google Scholar 

  23. T.B. Massalski: InPhysical Metallurgy, ed. by R.W. Calm (North-Holland, Amsterdam 1974) p. 165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triftshäuser, W., Matter, H. & Winter, J. Vacancy-impurity interaction in dilute iron alloys by positron annihilation. Appl. Phys. A 28, 179–187 (1982). https://doi.org/10.1007/BF00617984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617984

PACS

Navigation