Applied Physics A

, Volume 28, Issue 3, pp 161–166 | Cite as

A study of electronic states near the interface in ferroelectric-semiconductor heterojunction prepared by rf sputtering of PbTiO3

  • Y. Matsui
  • M. Okuyama
  • M. Noda
  • Y. Hamakawa
Contributed Papers


Interface states in the ferroelectric-semiconductor junction have been investigated from analyses of DLTS andC-V data. Two trap levels are located at 0.21 and 0.36 eV below the conduction band near the silicon side of the interface in the MFS (Metal-Ferroelectric-Semiconductor) structure. The interface states density has been drastically reduced by putting an oxide layer between ferroelectric and semiconductor with certain heat treatment in H2 atmosphere at 500 °C. It has been found that the MFMOS (Metal-Ferroelectric-Metal-Oxide-Semiconductor) structure shows the least interface states density (less than 1011cm−2eV−1) with the maximal dielectric constant of PbTiO3 thin films.


73.20 73.40 79.20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Y. Wu: IEEE Trans. ED-21, 499 (1974)Google Scholar
  2. 2.
    G.H. Haertling, C.E. Land: J. Am. Ceram. Soc.54, 1 (1971)Google Scholar
  3. 3.
    C.E. Land, W.D. Smith: Appl. Phys. Lett.23, 57 (1973)Google Scholar
  4. 4.
    A. Okada: J. Appl. Phys.49, 4495 (1978)Google Scholar
  5. 5.
    M. Isida, H. Matsunami, T. Tanaka: J. Appl. Phys.48, 951 (1977)Google Scholar
  6. 6.
    Y. Higuma, K. Tanaka, T. Nakagawa, T. Kariya, Y. Hamakawa: Jpn. J. Appl. Phys.16, 1707 (1977)Google Scholar
  7. 7.
    M. Okuyama, T. Usuki, Y. Hamakawa, T. Nakagawa: Appl. Phys.21, 339 (1980)Google Scholar
  8. 8.
    M. Oikawa, K. Toda: Appl. Phys. Lett.29, 491 (1976)Google Scholar
  9. 9.
    R.N. Castellano, L.G. Feinstain: J. Appl. Phys.50, 4406 (1979)Google Scholar
  10. 10.
    V.G. Gavrilyachenko, R.I. Spinko, M.A. Martynenko, E.G. Fesenko: Sov. Phys.-Solid State12, 1203 (1970)Google Scholar
  11. 11.
    E. Yamaka, T. Hayashi, M. Matsumoto: Infrared Phys.11, 247 (1971)Google Scholar
  12. 12.
    I. Ueda, S. Ikegami: Jpn. J. Appl. Phys.7, 236 (1968)Google Scholar
  13. 13.
    M. Okuyama, Y. Matsui, H. Nakano, T. Nakagawa, Y. Hamakawa: Jpn. J. Appl. Phys.18, 1633 (1979)Google Scholar
  14. 14.
    M. Okuyama, Y. Matsui, H. Nakano, Y. Hamakawa: Proc. 8th Int. Conf. Vacuum Congress. (1980) p. 503Google Scholar
  15. 15.
    Y. Matsui, M. Okuyama, N. Fujita, Y. Hamakawa: J. Appl. Phys.52, 5107 (1981)Google Scholar
  16. 16.
    Y. Matsui, M. Okuyama, Y. Hamakawa: Proc. 3rd Ferroelectric Mat. Appl. (FMA Office, Kyoto, 1981); Jpn. J. Appl. Phys.20, (1981) Suppl. p. 21Google Scholar
  17. 17.
    Y. Matsui, H. Nakano, M. Okuyama, T. Nakagawa, Y. Hamakawa: Proc. 2nd Ferroelectric Mater. Appl. (1979) p. 239Google Scholar
  18. 18.
    M. Okuyama, Y. Matsui, H. Seto, Y. Hamakawa: Proc. 12th Conf. Solid State Devices, Tokyo (1980): Jpn. J. Appl. Phys.20, (1981) Suppl. p. 315Google Scholar
  19. 19.
    K. W. Yeh, R.S. Muller: Appl. Phys. Lett.29, 521 (1976)Google Scholar
  20. 20.
    D.V. Lang: J. Appl. Phys.45, 3023 (1974)Google Scholar
  21. 21.
    S.J. Forash: J. Appl. Phys.47, 3597 (1976)Google Scholar
  22. 22.
    J.W. Chen, A.G. Milnes, A. Rohatgi: Solid State Electron.22, 801 (1979)Google Scholar
  23. 23.
    W. Fahrner, A. Goetzberger: Appl. Phys. Lett.21, 329 (1972)Google Scholar
  24. 24.
    C.S. Fuller, R.A. Logan: J. Appl. Phys.28, 1427 (1957)Google Scholar
  25. 25.
    J.E. Carnes, W.F. Kosonocky: Appl. Phys. Lett.20, 261 (1972)Google Scholar
  26. 26.
    K. Yamasaki, M. Yoshida, T. Sugano: Jpn. J. Appl. Phys.18, 113 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Y. Matsui
    • 1
  • M. Okuyama
    • 1
  • M. Noda
    • 1
  • Y. Hamakawa
    • 1
  1. 1.Faculty of Engineering ScienceOsaka UniversityOsakaJapan

Personalised recommendations