Advertisement

Journal of Superconductivity

, Volume 6, Issue 2, pp 111–118 | Cite as

Resistivity and magnetic susceptibility studies of TlmCan−1Ba2CunOy before and after doping with LiF

  • A. A. El-Hamalawy
  • M. M. El-Zaidia
  • A. A. Ammar
  • M. M. Elkholy
Article
  • 23 Downloads

Abstract

Measurements of the superconducting resistance as a function of temperature were performed using the conventional four-probe method. The transition to complete superconductivity was recorded for samples of (Tl2Ca2Ba2Cu3O10)100−xLiF x (2223) mixed with different LiF ratiosx=0, 2, 4, 5, 6, 8, 10, and 12 wt.%. It was found that the transition temperatureT c was increased up to 5 wt.% of LiF. Further addition of LiF decreasesT c . Therefore, 5 wt.% LiF is the optimum concentration giving a transition temperature of 130 K. Measurements of the superconducting resistance of all the samples except the (1111) compound show that the addition of 5 wt.% LiF increasesT c and decreases the metastable phases. The real part of the a.c. magnetic susceptibilityϰa.c. is studied using a zero-field cooled mechanism. The temperature dependence ofϰa.c. for the prepared TlBaCaCuO having stoichiometric composition of (1111), (2223), (2234), and (3245) and that after doping with 5 wt.% LiF showed a broad feature. The transition to the complete diamagnetic state takes place in a broad transition region containing many transition steps, indicating the presence of metastable phases. The addition of LiF decreases the fluctuation in the transition region and its effect in reducing the number of multiphases.

Key words

LiF-doped TlCaBaCuO resistivity susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. P. Deslandes, J. Provost, and B. Raveau,Z. Phys 68, 421 (1987).Google Scholar
  2. 2.
    R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, C. G. Hadidiacos, P. J. Heaney, D. R. Veblen, Z. Z. Sheng, A. El-Ali, and A. M. Herman,Phys. Rev. Lett. 60, 1657 (1988).Google Scholar
  3. 3.
    M. A. Subramanian, C. C. Torardi, J. C. Calabrese, I. S. Chowdory, J. Hnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdory, and A. W. Skight,Science 239, 1016 (1988)Google Scholar
  4. 4.
    Z. Sheng and A. M. Hermann,Nature (London) 332, 55 (1988);332, 138 (1988).Google Scholar
  5. 5.
    Z. Shenget al., Appl. Phys. Lett. 52, 1738 (1988).Google Scholar
  6. 6.
    M. Hervieu, C. E. Michel, B. Domenges, Y. Laligant, A. Lebail, G. Ferey, and B. Raveau,Mod. Phys. Lett. B 2, 491 (1988).Google Scholar
  7. 7.
    C. C. Torardi, M. A. Subramanian, S. C. Calabrese, J. Gopalikrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdory, and A. W. Skight,Science 240, 631 (1998)Google Scholar
  8. 8.
    A. Maignan, C. Michel, M. Hervieu, D. Groult, and B. Raveau,Mod. Phys. Lett. B 2, 681 (1987).Google Scholar
  9. 9.
    R. N. Hazen, C. T. Prewitt, R. J. Angle, N. L. Ross, C. P. G. Finger, P. H. Hor, R. L. Meng, Y. Y. Surf, Y. Q. Wang, Y. Y. Xue, Z. J. Huang, L. Gao, J. Bechtold, and C. W. Chu,Phys. Rev. Lett. 60, 1174 (1988).Google Scholar
  10. 10.
    S. S. P. Parkin, V. Y. Lee, E. M. Engler, A. I. Nazzal, R. Savoy, T. C. Huang, G. Gorman, and R. Beyers,Phys. Rev. B 38, 6531 (1988).Google Scholar
  11. 11.
    M. Epischutz, Van Uitert, G. S. Grader, E. M. Gyorgy, S. H. Glaru, W. H. Grodki-ewicz, T. R. Kyle, A. E. White, K. T. Short, and Zydzik,Appl. Phys. Lett. 53, 911 (1988).Google Scholar
  12. 12.
    Y. L. Zhang, Che G. Ling, X. R. Jek Chen, Q. S. Yong, D. N. Zheng, J. H. Wang, D. H. Huang, and S. S. Xle,J. Supercond. Sci. Technol 292–293 (1988).Google Scholar
  13. 13.
    W. Chonged, L. Qin, Zhaohui, S. Zunxiao, L. Gian, L. Ke, W.Google Scholar
  14. 14.
    L. Gao, Z. J. Huang, R. L. Meng, P. H. Hor, J. Bechtold, Y. Y. Sun, C. W. Chu, Z. Z. Sheng, and M. Herman,Nature (London)332 (1988).Google Scholar
  15. 15.
    R. Beyerset al., Appl. Phys. Lett. 53, 432 (1988).Google Scholar
  16. 16.
    H. Ihara, R. Sugise, M. Hirabayashi, N. Terada, M. Jo, K. Hayash, A. Negishi, M. Tokumoto, Y. Kimura, and Shimomura,Nature (London) 334, 518 (1988)Google Scholar
  17. 17.
    R. Sugise, M. Hirabayashi, N. Terada, Jo M. Shimomura, M.J. Ihara and H. Ihara,Jpn. J. Appl Phys. 27, 11709 (1988).Google Scholar
  18. 18.
    H. Kusuhara, T. Ko Tami, H. Takei, and K. Tada,Jpn. Appl. Phys,28, 1172–1774 (1989).Google Scholar
  19. 19.
    Wu, Nae. Lih, Lee, Sern. Nan and Yoa, Y. D.Jpn. J. Appl. Phys,28, 1349–1351 (1989).Google Scholar
  20. 20.
    K. C. Goretta, D. Shi, B. Malecki, M. C. Hash, and T. Bloom,Supercond. Sci. Technol. 2, 192–194 (1989).Google Scholar
  21. 21.
    A. C. Bodi,Phys. Rev. B 4, 2127–2134 (1990).Google Scholar
  22. 22.
    A. A. El-Hamalaway, and A. A. Bahgat,Hyperfine interact. 5, 1287–1292 (1990).Google Scholar
  23. 23.
    P. Stineret al., Z. Phys. B, Cond. Matter 67, 19 (1987).Google Scholar
  24. 24.
    Y. Tokura, J. B. Torrance, A. I. Nazzal, T. C. Huang, and C. Ortiz,J. Am. Chem. Soc. 109, 7555 (1987).Google Scholar
  25. 26.
    H. Ihara, M. Hirabayashi, N. Terada, Y. Kimura, K. Senzaki, and M. Tokumoto,J. Appl. Phys. 26, L436 (1987).Google Scholar
  26. 27.
    H. Ihara, M. Hirabayashi, N. Terada, Y. Kimura, K. Senzaki, N. Akimoto, K. Bushida, F. Kawashima, and R. J. Uzuka,J. Appl. Phys. 26, L460 (1987).Google Scholar
  27. 28.
    L. Pauling,Phys. Rev. Lett. 59, 225 (1987).Google Scholar
  28. 29.
    Y. L. Zhang, Che G. Ling, X. R. Jek. Chen, Q. S. Yong, D. Zheng, J. H. Wang, D. H. Huang, and S. S. Xle,J. Supercond. Sci. Technol 292–293 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. A. El-Hamalawy
    • 1
  • M. M. El-Zaidia
    • 2
  • A. A. Ammar
    • 2
  • M. M. Elkholy
    • 2
  1. 1.Faculty of EngineeringMenoufla UniversityMenouf, MenoufiaEgypt
  2. 2.Physics Department, Faculty of ScienceMenoufia UniversityShibin El-Kom, MenoufiaEgypt

Personalised recommendations