Skip to main content
Log in

Magnetic and transport critical current density of laser-irradiated Sm-Ba-Cu-O superconductor at 4.2 K

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The low temperature (4.2 K) magnetic and transport critical current density of laser-irradiated (Q-switched ruby laser, 694 nm, 30 ns) Sm-Ba-Cu-O ceramic superconductors prepared by the coprecipitation technique have been investigated. Laser irradiation did not significantly change the structural parameter and the critical transition temperatureT c but caused an appreciable increase in magnetic critical current densityJ mc and transport critical current densityJ tc . Inverse a.c. Josephson effect studies at 77 K showed a sharp decrease of microwave-induced d.c. voltage after laser irradiation. SEM studies revealed partial melting at grain boundaries and grain growth due to sintering which improves the interconnectivity in the network of superconducting grain structures after laser irradiation. These phenomenon are attributed to physical densification and consequent reduction in the total number of weak links between the superconducting grains. The significant increase ofJ mc andJ tc after laser irradiation is presumably connected with the creation of irradiation-induced mobile defects which act as pinning centers and, hence, stronger Josephson current paths between the superconducting intergrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Cava, B. Batlogg, C. H. Chen, F. A. Reitman, S. M. Zahurak, and D. Werder,Phys. Rev. B 36, 5719 (1987).

    Google Scholar 

  2. T. T. M. Palstra, B. Batlogg, R. B. Van Dover, L. E. Schneemeyer, and J. V. Waszczak,Phys. Rev. B 41, 6621 (1990).

    Google Scholar 

  3. G. P. Summers, E. A. Burke, D. B. Chrisey, M. Nastasi, and J. R. Tesmer,Appl. Phys. Lett. 55, 1469 (1989).

    Google Scholar 

  4. A. Wisniewski, M. Barran, P. Przysiupski, H. Szymczak, A. Pajaczkowska, B. Pytel, and K. Pytel,Solid State Commun. 65, 577 (1988).

    Google Scholar 

  5. J. Waliszewski, N. H. Andersen, L. Dobrzynski, J. Ihringer, B. Lebech, W. Prandl, and A. WinsniewskiPhysica C 160, 189 (1989).

    Google Scholar 

  6. J. Bohandy, J. Suter, B. F. Kim, K. Moorjani, and F. J. Adrian,Appl. Phys. Lett. 51, 2161 (1987).

    Google Scholar 

  7. J. O. Willis, D. W. Cooke, R. D. Brown, J. R. Cost, J. F. Smith, J. L. Smith, R. M. Aikin, and M. Maez,Appl. Phys. Lett. 53, 417 (1988).

    Google Scholar 

  8. B. D. Weaver, J. M. Pond, D. B. Chrisey, J. S. Horwitz, H. S. Newman, and G. P. Summers,Appl. Phys. Lett. 58, 1563 (1991).

    Google Scholar 

  9. H. Uelmaier,Irreversible Properties of Type II Superconductors, (Springer-Verlag, New York, 1972), Chapter 5.

    Google Scholar 

  10. A. M. Campbell and J. E. Evetts,Adv. Phys. 21, 199 (1972).

    Google Scholar 

  11. G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C. Field, and F. Holtzberg,Phys. Rev. Lett. 62, 827 (1989).

    Google Scholar 

  12. M. Tachiki and S. Takahashi,Solid State Commun. 70, 291 (1989).

    Google Scholar 

  13. P. Pramanic, B. K. Roul, S. Chakrabarty, S. Biswas, D. Bhattacharya, and K. L. Chopra, “High-T c superconductor,” in:Coprecipitation Route to Ceramic Superconductor, Vol. II (Nova Science Publishers, New York), (1989).

    Google Scholar 

  14. P. Pramanic, S. Biswas, S. Chakraborty, B. K. Roul, and K. L. Chopra,Mater. Res. Bull. 25, 877 (1990).

    Google Scholar 

  15. B. K. Roul, V. R. Kalvey, and P. Pramanic,J. Supercond. 5, 245 (1992).

    Google Scholar 

  16. C. P. Bean,Phys. Rev. Lett. 8, 250 (1962).

    Google Scholar 

  17. C. P. Bean,Rev. Mod. Phys. 36, 31 (1964).

    Google Scholar 

  18. J. C. Clem and V. G. Kogan,Jpn. J. Appl. Phys. 26, 1161 (1987).

    Google Scholar 

  19. T. R. Dinger, T. K. Worthinton, W. J. Gallagher, and R. L. Sandstrom,Phys. Rev. Lett. 58, 2687 (1987).

    Google Scholar 

  20. B. Batlogg, A. P. Ramirez, R. J. Cava, R. B. Van Dover, and E. A. Reitman,Phys. Rev. B 35, 5340 (1987).

    Google Scholar 

  21. P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. R. McGuire, and R. J. Gambino,Phys. Rev. Lett. 58, 2684 (1987).

    Google Scholar 

  22. A. Umezewa, G. W. Crabtree, J. Z. Liu, H. W. Weber, W. K. Kwok, L. H. Nunez, T. J. Moran, and C. H. Sowers,Phys. Rev. B. 36, 7551 (1987).

    Google Scholar 

  23. R. Wordenweber, K. Heinemanm, G. V. S. Sastry, and H. C. Freyhardt,Supercond. Sci. Technol. 2, 207 (1989).

    Google Scholar 

  24. Y. Xu, W. Guan, and K. Zeibig,Physica C 153-155, 1657 (1988).

    Google Scholar 

  25. E. J. Kramer,J. Appl. Phys. 44, 1360 (1976).

    Google Scholar 

  26. B. K. Roul, A. K. Pradhan, V. V. Rao, P. Bhattacharya, P. Pramanic, V. R. Kalvey, D. N. Bose, and K. L. Chopra,Bull. Mater. Sci. 14, 713 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roul, B.K. Magnetic and transport critical current density of laser-irradiated Sm-Ba-Cu-O superconductor at 4.2 K. J Supercond 6, 93–98 (1993). https://doi.org/10.1007/BF00617807

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617807

Key words

Navigation