Advertisement

Journal of Superconductivity

, Volume 6, Issue 2, pp 93–98 | Cite as

Magnetic and transport critical current density of laser-irradiated Sm-Ba-Cu-O superconductor at 4.2 K

  • B. K. Roul
Article

Abstract

The low temperature (4.2 K) magnetic and transport critical current density of laser-irradiated (Q-switched ruby laser, 694 nm, 30 ns) Sm-Ba-Cu-O ceramic superconductors prepared by the coprecipitation technique have been investigated. Laser irradiation did not significantly change the structural parameter and the critical transition temperatureT c but caused an appreciable increase in magnetic critical current densityJ mc and transport critical current densityJ tc . Inverse a.c. Josephson effect studies at 77 K showed a sharp decrease of microwave-induced d.c. voltage after laser irradiation. SEM studies revealed partial melting at grain boundaries and grain growth due to sintering which improves the interconnectivity in the network of superconducting grain structures after laser irradiation. These phenomenon are attributed to physical densification and consequent reduction in the total number of weak links between the superconducting grains. The significant increase ofJ mc andJ tc after laser irradiation is presumably connected with the creation of irradiation-induced mobile defects which act as pinning centers and, hence, stronger Josephson current paths between the superconducting intergrains.

Key words

Magnetic and transport critical current density laser irradiation pinning center weak lins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Cava, B. Batlogg, C. H. Chen, F. A. Reitman, S. M. Zahurak, and D. Werder,Phys. Rev. B 36, 5719 (1987).Google Scholar
  2. 2.
    T. T. M. Palstra, B. Batlogg, R. B. Van Dover, L. E. Schneemeyer, and J. V. Waszczak,Phys. Rev. B 41, 6621 (1990).Google Scholar
  3. 3.
    G. P. Summers, E. A. Burke, D. B. Chrisey, M. Nastasi, and J. R. Tesmer,Appl. Phys. Lett. 55, 1469 (1989).Google Scholar
  4. 4.
    A. Wisniewski, M. Barran, P. Przysiupski, H. Szymczak, A. Pajaczkowska, B. Pytel, and K. Pytel,Solid State Commun. 65, 577 (1988).Google Scholar
  5. 5.
    J. Waliszewski, N. H. Andersen, L. Dobrzynski, J. Ihringer, B. Lebech, W. Prandl, and A. WinsniewskiPhysica C 160, 189 (1989).Google Scholar
  6. 6.
    J. Bohandy, J. Suter, B. F. Kim, K. Moorjani, and F. J. Adrian,Appl. Phys. Lett. 51, 2161 (1987).Google Scholar
  7. 7.
    J. O. Willis, D. W. Cooke, R. D. Brown, J. R. Cost, J. F. Smith, J. L. Smith, R. M. Aikin, and M. Maez,Appl. Phys. Lett. 53, 417 (1988).Google Scholar
  8. 8.
    B. D. Weaver, J. M. Pond, D. B. Chrisey, J. S. Horwitz, H. S. Newman, and G. P. Summers,Appl. Phys. Lett. 58, 1563 (1991).Google Scholar
  9. 9.
    H. Uelmaier,Irreversible Properties of Type II Superconductors, (Springer-Verlag, New York, 1972), Chapter 5.Google Scholar
  10. 10.
    A. M. Campbell and J. E. Evetts,Adv. Phys. 21, 199 (1972).Google Scholar
  11. 11.
    G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C. Field, and F. Holtzberg,Phys. Rev. Lett. 62, 827 (1989).Google Scholar
  12. 12.
    M. Tachiki and S. Takahashi,Solid State Commun. 70, 291 (1989).Google Scholar
  13. 13.
    P. Pramanic, B. K. Roul, S. Chakrabarty, S. Biswas, D. Bhattacharya, and K. L. Chopra, “High-T c superconductor,” in:Coprecipitation Route to Ceramic Superconductor, Vol. II (Nova Science Publishers, New York), (1989).Google Scholar
  14. 14.
    P. Pramanic, S. Biswas, S. Chakraborty, B. K. Roul, and K. L. Chopra,Mater. Res. Bull. 25, 877 (1990).Google Scholar
  15. 15.
    B. K. Roul, V. R. Kalvey, and P. Pramanic,J. Supercond. 5, 245 (1992).Google Scholar
  16. 16.
    C. P. Bean,Phys. Rev. Lett. 8, 250 (1962).Google Scholar
  17. 17.
    C. P. Bean,Rev. Mod. Phys. 36, 31 (1964).Google Scholar
  18. 18.
    J. C. Clem and V. G. Kogan,Jpn. J. Appl. Phys. 26, 1161 (1987).Google Scholar
  19. 19.
    T. R. Dinger, T. K. Worthinton, W. J. Gallagher, and R. L. Sandstrom,Phys. Rev. Lett. 58, 2687 (1987).Google Scholar
  20. 20.
    B. Batlogg, A. P. Ramirez, R. J. Cava, R. B. Van Dover, and E. A. Reitman,Phys. Rev. B 35, 5340 (1987).Google Scholar
  21. 21.
    P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. R. McGuire, and R. J. Gambino,Phys. Rev. Lett. 58, 2684 (1987).Google Scholar
  22. 22.
    A. Umezewa, G. W. Crabtree, J. Z. Liu, H. W. Weber, W. K. Kwok, L. H. Nunez, T. J. Moran, and C. H. Sowers,Phys. Rev. B. 36, 7551 (1987).Google Scholar
  23. 23.
    R. Wordenweber, K. Heinemanm, G. V. S. Sastry, and H. C. Freyhardt,Supercond. Sci. Technol. 2, 207 (1989).Google Scholar
  24. 24.
    Y. Xu, W. Guan, and K. Zeibig,Physica C 153-155, 1657 (1988).Google Scholar
  25. 25.
    E. J. Kramer,J. Appl. Phys. 44, 1360 (1976).Google Scholar
  26. 26.
    B. K. Roul, A. K. Pradhan, V. V. Rao, P. Bhattacharya, P. Pramanic, V. R. Kalvey, D. N. Bose, and K. L. Chopra,Bull. Mater. Sci. 14, 713 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • B. K. Roul
    • 1
  1. 1.Special Materials DivisionRegional Research LaboratoryBhubaneswar 751013, OrissaIndia

Personalised recommendations