Skip to main content
Log in

New oxygen donors in silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Oxygen donor traps and oxygen-related precipitates are investigated by deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). The so-called New Donors (ND's) occur after thermal treatments in the temperature range of 650 °–800 ° C. They have a continuous distribution of trap states with respect to energy in the band gap of Si. The concentration of the trap states increases towards the conduction band edge. The precipitates observed are mainly platelets and ribbon-like defects. The formation and annihilation kinetics of ND traps and oxygen-related precipitates are correlated. An “SiO x Interface Model” is proposed to explain the origin and the donor-like behavior of the ND traps. The ND trap spectrum is composed of two different types of trap states: interface states at the surface of precipitates and bound states in the Coulombic wells of a fixed positive charge which is located in the SiO x precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zulehner, D. Huber: InCrystals Vol. 8 (Springer, Berlin, Heidelberg 1982) p. 1

    Google Scholar 

  2. J.H. Matlock: Silicon Processing, ASTM STP 804, ed. by D.C. Gupta (American Society for Testing and Materials 1983) p. 332

  3. L. Jastrzebski, R. Soydan, J. McGinn, R. Kleppinger, M. Blumenfeld, G. Gillespie, N. Arnold, B. Goldsmith, W. Henry, S. Vecumbra: J. Electrochem. Soc.134, 1018 (1987)

    Google Scholar 

  4. K. Hölzlein, G. Pensl, M. Schulz, P. Stolz: Rev. Sci. Instrum.57, 1373 (1986)

    Google Scholar 

  5. J. Patel, W. Jackson, H. Reiss: J. Appl. Phys.48, 5279 (1977)

    Google Scholar 

  6. P. Freeland, K. Jackson, C. Lowe, J. Patel: Appl. Phys. Lett.30, 31 (1977)

    Google Scholar 

  7. W. Patrick, E. Hearn, W. Westrop, A. Bohg: J. Appl. Phys.50, 7156 (1979)

    Google Scholar 

  8. J.R. Patel:Semiconductor Silicon 1981, ed. by H.R. Huff, R.J. Kriegler, Y. Takeishi, Electrochem. Soc. Pennington, N.J. 1981, p. 189

    Google Scholar 

  9. K. Tempelhoff, B. Hahn, R. Gleichmann: In Ref. [8], p. 244

    Google Scholar 

  10. K. Wada, H. Nakanishi, T. Takaoko, N. Inoue: J. Cryst. Growth57, 535 (1982)

    Google Scholar 

  11. J. Desseaux-Thibault, A. Bourret, J.M. Penisson: Inst. Phys. Conf. Ser.67, 71 (1983)

    Google Scholar 

  12. H. Bender: Phys. Status Solidi (a)86, 245 (1984)

    Google Scholar 

  13. A. Bourret, J. Thibault-Desseaux, D.N. Seidman: J. Appl. Phys.55, 825 (1984)

    Google Scholar 

  14. A. Bourret: Inst. Phys. Conf. Ser.87, 39 (1987)

    Google Scholar 

  15. W.A. Tiller: J. Appl. Phys.59, 3255 (1986)

    Google Scholar 

  16. G.F. Cerofolini, L. Meda, M.L. Polignano, G. Ottaviani, H. Bender, C. Claeys, A. Armigliato, S. Somi:Semiconductor Silicon 1986, Proc. 5th Int. Symp. on Silicon Materials Science and Technology, ed. by H.R. Huff, T. Abe, B. Kolbesen (The Electrochem. Soc., Pennington N.J. 1986) p. 706

    Google Scholar 

  17. W. Bergholz, J.L. Hutchison, P. Pirouz: J. Appl. Phys.58, 3419 (1985)

    Google Scholar 

  18. W. Bergholz, J.L. Hutchison, P. Pirouz: Proc. Oxford Conf. on Micr. of Semicond. Mater., 1985

  19. W. Bergholz, J.L. Hutchison, G.R. Booker: In Ref. [16] p. 874

    Google Scholar 

  20. P. Capper, A.W. Jones, E.J. Wallhouse, J.G. Wilkes: J. Appl. Phys.48, 1646 (1977)

    Google Scholar 

  21. A. Kanamori, M. Kanamori: J. Appl. Phys.50, 8095 (1979)

    Google Scholar 

  22. V. Cazcarra, P. Zunino: J. Appl. Phys.51, 4206 (1980)

    Google Scholar 

  23. K. Schmalz, P. Gaworzewski: Phys. Stat. Solidi (a)64, 151 (1981)

    Google Scholar 

  24. P. Gaworzewski, K. Schmalz: Phys. Stat. Solidi (a)77, 571 (1983)

    Google Scholar 

  25. N. Fukuoka: Jpn. J. Appl. Phys.24, 1450 (1985)

    Google Scholar 

  26. K. Yasutake, M. Umeno, H. Kawabe, H. Nakayama, T. Nishino, Y. Hamakawa: Jpn. J. Appl. Phys.21, 28 (1982)

    Google Scholar 

  27. M. Tajima, U. Gösele, J. Weber, R. Sauer: Appl. Phys. Lett.43, 270 (1983)

    Google Scholar 

  28. P. Wagner, C. Holm, E. Sirtl, R. Oeder, W. Zulehner: InAdvances in Solid State Physics, XXIV, ed. by P. Grosse, (Vieweg, Braunschweig 1984) p. 191

    Google Scholar 

  29. K. Hölzlein, G. Pensl, M. Schulz: Appl. Phys. A34, 155 (1984)

    Google Scholar 

  30. K. Hölzlein: Ph. D. thesis, University of Erlangen 1985

  31. K. Hölzlein, G. Pensl, M. Schulz, N.M. Johnson: Appl. Phys. Lett.48, 916 (1986)

    Google Scholar 

  32. K. Hölzlein, G. Pensl, M. Schulz, N.M. Johnson: Mat. Res. Soc. Symp. Proc.59, 481 (1986)

    Google Scholar 

  33. A. Henry, J.L. Pautrat, K. Saminadayar: InMaterial Science Forum,10–12, ed. by H.J. von Bardeleben (Trans. Tech. Publications Ltd., Switzerland 1986) p. 985

    Google Scholar 

  34. M. Schulz: Surf. Sci.132, 422 (1983)

    Google Scholar 

  35. J. Frenkel: Phys. Rev.54, 647 (1938)

    Google Scholar 

  36. H. Lefevre: Appl. Phys. A22, 15 (1980)

    Google Scholar 

  37. R. Wörner, O.F. Schirmer: Phys. Rev. B34, 1381 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pensl, G., Schulz, M., Hölzlein, K. et al. New oxygen donors in silicon. Appl. Phys. A 48, 49–57 (1989). https://doi.org/10.1007/BF00617763

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617763

PACS

Navigation