Journal of Applied Electrochemistry

, Volume 15, Issue 1, pp 23–27 | Cite as

Influence of variables in nickel-manganese-zinc alloy plating from a sulphate bath

  • R. Kashyap
  • S. N. Srivastava
  • S. C. Srivastava


An Ni-Mn-Zn alloy has been satisfactorily electrodeposited from a sulphate bath containing nickel sulphate (20–23 g dm−3), manganese sulphate (76–88 g dm−3), zinc sulphate (18–24 g dm−3), ammonium sulphate (30 g dm−3), thiourea (18g dm−3) and ascorbic acid (0.8 g dm−3) under various plating conditions, namely, current density 1.0–3.0 A dm−2; temperature 30–45° C; pH 2.7–4.2 and duration of electrolysis 15–30 min. Semibright, blackish-grey, thin films were generally deposited with the proportion of nickel and manganese in the deposits increasing with increasing current density, temperature and duration of electrolysis. However, the amount of zinc increased as the pH of the solution was raised. The cathode efficiency for alloy deposition increased linearly as the temperature or the pH of the solution was decreased, whereas at any particular pH and temperature it continuously rose with increasing current density or the time of deposition. The cathode polarization shifted to more negative values on increasing the current density and to less negative values at higher pH values and temperatures which consequently lowered the throwing power under the latter conditions.


Thiourea Ammonium Sulphate Cathode Polarization Zinc Sulphate Bath Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [l]
    T. S. Vanaja and T. L. Ramachar,Met. Finish. 69 (1971) 44.Google Scholar
  2. [2]
    O. Petroseviciute, E. Siusa and B. Stulpinas, seeChem. Abs. 77 (1972) 13091v.Google Scholar
  3. [3]
    T. S. Vanaja and T. L. Ramachar,Met. Finish. 70 (1972) 89.Google Scholar
  4. [4]
    Idem, Electroplat. Met. Finish. 26 (1973) 15.Google Scholar
  5. [5]
    Idem, ibid. 26 (1973) 20.Google Scholar
  6. [6]
    L. Domnikov,Met. Finish. 71 (1973) 47.Google Scholar
  7. [7]
    O. Petroseviciute, B. Stulpinas and E. Siusa,Liet. TSR Aukst. Mokyklu Mokslo Darb., Chem. Chem. Technol. 16 (1974) 291.Google Scholar
  8. [8]
    T. S. Vanaja and T. L. Ramachar,Galvanotechnik 66 (1975) 108.Google Scholar
  9. [9]
    B. P. Vorob'ev and P. M. Shilov,Tekhnol. Organ. Proizvod. 4 (1975) 48.Google Scholar
  10. [10]
    N. T. Kudryavtsev, R. G. Golovchanskaya, L. P. Gavrilma and K. M. Tyutina,Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 13 (1970) 237.Google Scholar
  11. [11]
    G. A. Volyanuk and E. V. Guseva,Zh. Prikl. Khim. 48 (1975) 648.Google Scholar
  12. [12]
    O. Petroseviciute, A. Sulcius and B. Stulpinas,Liet. TSR Aukst. Mokyklu Mokslo Darb., Chem. Chem. Technol. 22 (1980) 7.Google Scholar
  13. [13]
    Idem, ibid. 22 (1980) 11.Google Scholar
  14. [14]
    O. Petroseviciute, B. Stulpinas and E. Siusa,ibid. 19 (1978) 38.Google Scholar
  15. [15]
    R. K. Shukla, S. K. Jha and S. C. Srivastava,J. Appl. Electrochem. 11 (1981) 697.CrossRefGoogle Scholar
  16. [16]
    A. I. Vogel, ‘A Text Book of Quantitative Inorganic Analysis‘. 3rd edn. ELBS and Longmans Green and Co. Ltd., London (1961) p. 787.Google Scholar
  17. [17]
    F. A. Lowenheim (Ed.) ‘Modern Electroplating’, 2nd edn., John Wiley, New York (1963) p. 470.Google Scholar
  18. [18]
    G. E. Gardam,Trans. Faraday Soc. 34 (1938) 698.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • R. Kashyap
    • 1
  • S. N. Srivastava
    • 1
  • S. C. Srivastava
    • 1
  1. 1.Department of ChemistryUniversity of LucknowIndia

Personalised recommendations