Journal of Applied Electrochemistry

, Volume 8, Issue 2, pp 121–134 | Cite as

The potentiodynamic behaviour of copper in NaOH solutions

  • A. M. Castro Luna De Medina
  • S. L. Marchiano
  • A. J. Arvía


The potentiodynamic behaviour of Cu in different NaOH solutions at 25° C is studied paying particular attention to the anodic formation and cathodic reduction of the Cu(I) and Cu(II) surface species occurring during the electrochemical processes. The potentiodynamic response of the electrochemical interface is strongly dependent on the perturbation conditions and it reveals the complexity of the electrochemical reactions occurring there as well as the inter-relation of the processes taking place at different potentials. A reaction pathway to interpret the corresponding behaviour is advanced.


Copper Physical Chemistry Electrochemical Reaction Reaction Pathway Electrochemical Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Müller,Z. Elektrochem. 13 (1907) 133.Google Scholar
  2. [2]
    W. Feitknecht and H. W. Linel,Helv. Chim. Acta 27 (1944) 775.Google Scholar
  3. [3 ]
    A. Hickling and D. Taylor,Trans. Faraday Soc. 44 (1948) 262.Google Scholar
  4. [4]
    L. De Brouckère, F. Bouillon and Y. Bouillon-Nysseu,Bull. Soc. Chim. Belges 60 (1951) 26.Google Scholar
  5. [5]
    S. E. S. El Wakkad and S. H. Emara,J. Chem. Soc. (1953) 3508.Google Scholar
  6. [6]
    J. S. Halliday,Trans. Faraday Soc. 50 (1954) 171.Google Scholar
  7. [7]
    F. Bouillon, J. Piron and J. Esteveres,Bull. Soc. Chim. Belges 67 (1958) 643.Google Scholar
  8. [8]
    A. M. Shams El Din and F. M. Abd El Wahab,Electrochim. Acta 9 (1964) 113.Google Scholar
  9. [9]
    B. Miller,J. Electrochem. Soc. 116 (1969) 1675.Google Scholar
  10. [10]
    H. P. Leckie.ibid. 117 (1970) 1478.Google Scholar
  11. [11]
    M. J. Dignan and D. B. Gibbs.Canad. J. Chem. 48 1970) 1242.Google Scholar
  12. [12]
    N. A. Hampson, R. J. Latham, J. B. Lee and K. I. MacDonald,J. Electroanal. Chem. 31 (1971) 57.Google Scholar
  13. [13]
    N. A. Hampson, J. B. Lee and K. I. MacDonaldJ. Electroanal. Chem. 32 (1971) 165,Google Scholar
  14. [14]
    J. Ambrose, R. G. Barradas and D. W. Shoesmith,ibid. 47 (1973) 47.Google Scholar
  15. [15]
    J. Ambrose, R. G. Barradas and D. W. Shoesmith,ibid. 47 (1973) 65.Google Scholar
  16. [16]
    D. D. MacDonald,J. Electrochem. Soc. 121 (1974) 651.Google Scholar
  17. [17]
    D.W. Shoesmith, T. E. Rummery, D. Owen and W. Lee,ibid. 123 (1976) 790.Google Scholar
  18. [18]
    G. Paus, A. J. Calandra and A. J. Arvia,Ann. Soc. Cient. Arg. 192 (1971) 35.Google Scholar
  19. [19]
    G. L. Kehl, ‘Fundamentos de la Práctica Metalográfica’, Aguilar, Madrid (1963).Google Scholar
  20. [20]
    W. J. Mc G. Tegart, ‘The Electrolytic and Chemical Polishing of Metals in Research and Industry’, Pergamon Press, London (1956).Google Scholar
  21. [21]
    M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’, Pergamon Press, Oxford (1966).Google Scholar
  22. [22]
    J. Ambrose, R. G. Barradas and K. Belnike,J. Electroanal. Chem. 42 (1973) 146.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • A. M. Castro Luna De Medina
    • 1
  • S. L. Marchiano
    • 1
  • A. J. Arvía
    • 1
  1. 1.División ElectroquímicaInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)La PlataArgentina

Personalised recommendations