Applied Physics A

, Volume 33, Issue 2, pp 77–82 | Cite as

Ion-beam mixing kinetics of Fe-Al multilayers studied by in situ electrical resistivity measurements

  • J. P. Rivière
  • J. Delafond
  • C. Jaouen
  • A. Bellara
  • J. F. Dinhut
Contributed Papers


The ion-beam mixing of Fe-Al evaporated multiple-layer films has been investigated by measuring continuously the electrical resistivity of the samples during the bombardment. The experimental curves exhibit a tendency toward a saturation process and allow the determination of the critical dose corresponding to the total mixing of the multiple-layer film. The variations of the volume fraction of intermixed atoms as a function of the ion dose have been deduced and a semi-empirical model is proposed to explain the observed kinetics.


61.80 72.15 73.60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Dearneley: Radiat. Eff.63, 1 (1982)Google Scholar
  2. 2.
    B.Y. Tsaur, S.S. Lau, J.W. Mayer: Appl. Phys. Lett.36, 823 (1980)Google Scholar
  3. 3.
    B.Y. Tsaur, S.S. Lau, L.S. Jung, J.W. Mayer: Nucl. Instrum. Methods182/183, 67 (1981)Google Scholar
  4. 4.
    J.W. Mayer, B.Y. Tsaur, S.S. Lau, L.S. Hung: Nucl. Instrum. Methods182/183, 1 (1981)Google Scholar
  5. 5.
    S.T. Picraux, W.J. Choyke (eds.):Metastable Materials Formation by Ion Implantation, Vol. 7 (North-Holland, Amsterdam 1982)Google Scholar
  6. 6.
    S.T. Picraux, D.M. Follstaedt, J. Delafond: In [, p. 71]Google Scholar
  7. 7.
    B.M. Paine, M.A. Nicolet, G.C. Banwell: In [, p. 79]Google Scholar
  8. 8.
    J.P. Biersack: Nucl. Instrum. Methods182/183, 199 (1981)Google Scholar
  9. 9.
    H.H. Andersen, H.L. Bay: InSputtering by Particle Bombardment I, ed. by R. Behrisch, Topics Appl. Phys.47 (Springer, Berlin, Heidelberg, New York 1981) Chap. 4Google Scholar
  10. 10.
    E.M. Schulson: Scr. Met.13, 823 (1979)Google Scholar
  11. 11.
    S. Matteson: Sand. Report Sans 83-1230 (May 1983), eds. M.A. Nicolet, S.T. PicrauxGoogle Scholar
  12. 12.
    B.M. Paine: As [Ref. 11]Google Scholar
  13. 13.
    G.J. Dienes, A.C. Damask: J. Appl. Phys.29, 1713 (1958)Google Scholar
  14. 14.
    P.K. Haff, Z.E. Switkowski: J. Appl. Phys.48, 3383 (1977)Google Scholar
  15. 15.
    H.H. Andersen: Appl. Phys.18, 131 (1979)Google Scholar
  16. 16.
    Z.L., J.F.M. Westendrop, S. Doom, F.W. Sarris: In [, p. 59]Google Scholar
  17. 17.
    M.T. Robinson:Radiation Damage in Metals (Am. Soc. Metals, Metals Park, Ohio 1976) p. 58Google Scholar
  18. 18.
    U. Littmark, W.O. Hofer: Nucl. Instrum. Methods168, 329 (1980)Google Scholar
  19. 19.
    P. Sigmund, A. Gras-Marti: Nucl. Instrum. Methods182/183, 25 (1981)Google Scholar
  20. 20.
    M.L. Roush, F. Davarya, O.F. Goktepe, T.D. Andreadis: Nucl. Instrum. Methods209/210, 67 (1983)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. P. Rivière
    • 1
  • J. Delafond
    • 1
  • C. Jaouen
    • 1
  • A. Bellara
    • 1
  • J. F. Dinhut
    • 1
  1. 1.Laboratoire de Métallurgie PhysiqueL.A. 131 C.N.R.S.PoitiersFrance

Personalised recommendations