Skip to main content
Log in

High-field recombination electroluminescence in vacuum-deposited anthracene and doped anthracene films

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electroluminescence (EL) study of anthracene and tetracene-doped anthracene films deposited by a vacuum evaporation onto a substrate at temperatureT 0=−60 °C is reported. Such films show high resistence to electrical breakdown so that their EL behaviour at high electric fields up to above 106 V/cm could be investigated. The high-field EL is interpreted in terms of electron-hole recombination mechanisms with creation of emitting singlet excitons; the electron and hole concentration being limited by injection at metal contacts and by field-independent carrier velocities. The theoretical expression for current density follows the experimental data for fields above 4×105 V/cm at room temperature and the EL intensity is predicted to be a power function of the measured current. It is suggested that in pure anthracene layers the power is determined by the contact injection conditions, i.e. by barrier heights and the effective masses of holes and electrons. In the doped films a guest molecules-induced energy trap distribution leads to a decrease of the power as confirmed by the experimental plots of the host EL intensity versus current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Pankove (ed.):Electroluminescence, Topics Appl. Phys.17 (Springer, Berlin, Heidelberg, New York 1977)

    Google Scholar 

  2. J.I. Pankove (ed.):Display Devices, Topics Appl. Phys.40 (Springer, Berlin, Heidelberg, New York 1980)

    Google Scholar 

  3. I.K. Werestchagin:Electroluminescence of Crystals (Nauka, Moscow 1974) (in Russian)

    Google Scholar 

  4. J. Dresner: RCA Rev.30, 322 (1969)

    Google Scholar 

  5. D.F. Williams, M. Schadt: Proc. IEEE58, 476 (1970)

    Google Scholar 

  6. J. Dresner, A.M. Goodman: Proc. IEEE58, 1868 (1970)

    Google Scholar 

  7. J. Gu, M. Kawabe, K. Masuda, S. Namba: J. Appl. Phys.48, 2493 (1977)

    Google Scholar 

  8. P.S. Vincett, W.A. Barlow, R.A. Hann, G.G. Roberts: Thin Solid Films94, 171 (1982)

    Google Scholar 

  9. J. Kalinowski, J. Godlewski, R. Signerski: Appl. Phys. A31, 215 (1983)

    Google Scholar 

  10. K.C. Kao, W. Hwang:Electrical Transport in Solids with Particular Reference to Organic Semiconductors (Pergamon Press, Oxford 1981)

    Google Scholar 

  11. G. Vaubel: Phys. Stat. Solidi35, K67 (1969)

    Google Scholar 

  12. D.F. Williams, M. Schadt: J. Chem. Phys.53, 3480 (1970)

    Google Scholar 

  13. H. Hwang, K.C. Kao: J. Chem. Phys.58, 3521 (1973)

    Google Scholar 

  14. L.L.T. Bradley, H.P. Schwob, D. Weitz, D.F. Williams: Mol. Cryst. Liq. Cryst.23, 271 (1973)

    Google Scholar 

  15. J. Sworakowski, J.M. Thomas, D.F. Williams, J.O. Williams: J. Chem. Soc. Faraday Trans. II70, 676 (1974)

    Google Scholar 

  16. J. Kalinowski, J. Godlewski: Chem. Phys. Lett.36, 345 (1975)

    Google Scholar 

  17. J. Gonzalez-Basurto, Z. Burshtein: Mol. Cryst. Liq. Cryst.31, 211 (1975)

    Google Scholar 

  18. J. Kalinowski, J. Godlewski, R. Signerski: Mol. Cryst. Liq. Cryst.33, 247 (1976)

    Google Scholar 

  19. J. Kalinowski, J. Godlewski, J. Gliński: J. Lumin.17, 467 (1978)

    Google Scholar 

  20. J. Gliński, J. Godlewski, J. Kalinowski: Mol. Cryst. Liq. Cryst.48, 1 (1978)

    Google Scholar 

  21. J. Gliński, J. Kalinowski: Mat. Sci.7, 157 (1981)

    Google Scholar 

  22. J. Kalinowski: Mat. Sci.7, 43 (1981)

    Google Scholar 

  23. M. Pope, H.P. Kallmann, P. Magnante: J. Chem. Phys.38, 2042 (1963)

    Google Scholar 

  24. W. Helfrich, W.G. Schneider: Phys. Rev. Lett.14, 229 (1965)

    Google Scholar 

  25. M. Sano, M. Pope, H. Kallmann: J. Chem. Phys.43, 2920 (1965)

    Google Scholar 

  26. I. Zschokke-Gränacher, H.P. Schwob, E. Baldinger: Solid State Commun.5, 825 (1967)

    Google Scholar 

  27. F. Lohmann, W. Mehl: J. Chem. Phys.50, 500 (1969)

    Google Scholar 

  28. D.F. Williams, M. Schadt: J. Chem. Phys.53, 3480 (1970)

    Google Scholar 

  29. H.P. Schwob, I. Zschokke-Gränacher: Mol. Cryst. Liq. Cryst.13, 115 (1971)

    Google Scholar 

  30. G. Sommer: Dipl. Thesis, Stuttgart University (1974) private information by N. Karl

  31. W. Helfrich, W.G. Schneider: J. Chem. Phys.44, 2902 (1966)

    Google Scholar 

  32. H.P. Schwob, D.F. Williams:Chem.Phys.Lett.13, 581 (1972)

    Google Scholar 

  33. H.P. Schwob, D.F. Williams: J. Chem. Phys.58, 1542 (1973)

    Google Scholar 

  34. M. Wittmer, I. Zschokke-Gränacher: J. Chem. Phys.63, 4187 (1975)

    Google Scholar 

  35. W. Helfrich: InPhysics and Chemistry of the Organic Solid State, Vol. 3, ed. by D. Fox, M.M. Labes, A. Weissberger (Wiley, New York 1967) p. 1

    Google Scholar 

  36. P.S. Vincett, W.A. Barlow, G.G. Roberts: Nature (London)255, 542 (1975)

    Google Scholar 

  37. P.S. Vincett, W.A. Barlow, G.G. Roberts: J. Appl. Phys.48, 3800 (1977)

    Google Scholar 

  38. P.S. Vincett, Z.D. Popovic, L. McIntyre: Thin Solid Films82, 357 (1981)

    Google Scholar 

  39. J. Singh, H. Bässler: Phys. Stat. Solidi (b)62, 147 (1974)

    Google Scholar 

  40. H. Sumi: J. Chem. Phys.70, 3775 (1979)

    Google Scholar 

  41. S. Nakano, Y. Maruyama: Solid State Commun.35, 671 (1980)

    Google Scholar 

  42. M. Pope, C.E. Swenberg:Electronic Processes in Organic Crystals (Clarendon Press, New York 1982)

    Google Scholar 

  43. J. Godlewski, J. Kalinowski: Mat. Sci.10, 81 (1984)

    Google Scholar 

  44. G.G. Roberts, T. M. McGinnity, W.A. Barlow, P.S. Vincett: Thin Solid Films68, 223 (1980)

    Google Scholar 

  45. N. Karl, H. Rohrbacher, D. Siebert: Phys. Stat. Solidi (a)4, 105 (1971)

    Google Scholar 

  46. L. Sebastian, G. Weiser, G. Peter, H. Bässler: Chem. Phys.75, 103 (1983)

    Google Scholar 

  47. Z. Dreger, J. Kalinowski: Unpublished results

  48. J.L. Hall, D.A. Jenning, R.H. McClintock: Phys. Rev. Lett.11, 364 (1963)

    Google Scholar 

  49. V. Ern: Phys. Rev. Lett.22, 8 (1969)

    Google Scholar 

  50. Z. Burshtein, A. Many: Mol. Cryst. Liq. Cryst.25, 31 (1974)

    Google Scholar 

  51. D.C. Hoesterey, G.M. Letson: J. Phys. Chem. Solids24, 1609 (1963)

    Google Scholar 

  52. F.J. Bryant, A. Bree, P.E. Fielding, W.G. Schneider: Disc. Faraday Soc.28, 48 (1959)

    Google Scholar 

  53. H. Kokado, W.G. Schneider: J. Chem. Phys.40, 2937 (1964)

    Google Scholar 

  54. J.M. Thomas, J.O. Williams, G.A. Cox: Trans. Faraday Soc.64, 2469 (1968)

    Google Scholar 

  55. M. Samoć, A. Samoć, N. Karl: Sci. Papers Inst. Org. Phys. Chem. Wrocław Tech. Univ.16, 269 (1978)

    Google Scholar 

  56. N. Karl: InFestkörperprobleme 14, 261 (Vieweg, Braunschweig 1974)

    Google Scholar 

  57. N.I. Wakayama, N. Wakayama, D.F. Williams: Mol. Cryst. Liq. Cryst.26, 275 (1974)

    Google Scholar 

  58. P.J. Reucroft, F.D. Mullins: J. Chem. Phys.58, 2918 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work supported in part by the Polish Academy of Sciences under Program MR.I.9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinowski, J., Godlewski, J. & Dreger, Z. High-field recombination electroluminescence in vacuum-deposited anthracene and doped anthracene films. Appl. Phys. A 37, 179–186 (1985). https://doi.org/10.1007/BF00617504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617504

PACS

Navigation