Journal of Applied Electrochemistry

, Volume 10, Issue 3, pp 351–355 | Cite as

Mass transfer at vertical cylinders under forced convection induced by the counter electrode gases

  • G. H. Sedahmed


Mass transfer coefficients were measured for the deposition of copper from acidified copper sulphate solution at a vertical cylinder cathode stirred by oxygen evolved at a horizontal lead anode placed below the cylinder. Variables studied were: oxygen discharge rate, electrolyte concentration and cylinder height. The mass transfer coefficient was found to increase by a factor of 1.8–2.6 depending on oxygen discharge rate and cylinder height. The mass transfer coefficient was related to oxygen discharge rate and cylinder height by the equation:
$$K = 65.8 \times 10^{ - 4} \frac{{V^{0.358} }}{{h^{0.29} }}$$


Oxygen Copper Convection Mass Transfer Counter Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


mass transfer coefficient (cm s−1)


oxygen discharge rate (cm3 cm−2 s−1)


limiting current (A cm−2)


anodic current density (A cm−2)


number of electrons involved in the reaction


Faraday's constant


electrode height (cm)


gas constant


temperature (K)


anode area (cm2)


oxygen pressure (atm)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Hine, M. Yasuda, R. Nakamura and T. Noda,J. Electrochem. Soc. 112 (1975) 1185.Google Scholar
  2. [2]
    R. E. De la Rue and C. W. Tobias,ibid 106 (1959) 827.Google Scholar
  3. [3]
    R. B. McMullin and F. N. Ruehlen,ibid 118 (1971) 1582.Google Scholar
  4. [4]
    N. Ibl and J. Venczél,Metalloberflache 24 (1970) 365.Google Scholar
  5. [5]
    N. Ibl,Chem, Ing. Techn. 43 (1971) 202.Google Scholar
  6. [6]
    L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013.Google Scholar
  7. [7]
    L. J. J. Janssen and J. G. Hoogland,ibid 18 (1973) 543.Google Scholar
  8. [8]
    L. J. J. Janssen,ibid 23 (1978) 81.Google Scholar
  9. [9]
    M. G. Fouad and G. H. Sedahmed,ibid 17 (1972) 665.Google Scholar
  10. [10]
    Idem, ibid 18 (1973) 55.Google Scholar
  11. [11]
    Idem, ibid 18 (1973) 279.Google Scholar
  12. [12]
    Idem, ibid 19 (1974) 861.Google Scholar
  13. [13]
    Idem, ibid 20 (1975) 615.Google Scholar
  14. [14]
    M. G. Fouad and G. H. Sedahmed, Extended Abstracts,27th Meeting of ISE, Zurich (1976) p. 52.Google Scholar
  15. [15 ]
    G. H. Sedahmed and L. W. Shemilt,J. Electrochem. Soc. 123 (1976) 950.Google Scholar
  16. [16]
    G. H. Sedahmed,J. Appl. Electrochem. 9 (1979) 37.Google Scholar
  17. [17]
    Idem, ibid 8 (1978) 399.Google Scholar
  18. [18]
    G. H. Sedahmed and L. W. Shemilt, to be published.Google Scholar
  19. [19]
    Idem, to be published.Google Scholar
  20. [20]
    V. A. Ettel, A. S. Gendron and B. V. Tilak,Metall. Trans. B,6B (1975) 31.Google Scholar
  21. [21]
    A. S. Gendron and V. A. Ettel,Canad. J. Chem. Eng. 5 (1975) 36.Google Scholar
  22. [22]
    V. A. Ettel, B. Tilak and A. S., Gendron,J. Electrochem. Soc. 121 (1974) 867.Google Scholar
  23. [23]
    V. G. Levich, ‘Physiocochemical Hydrodynamics’ Prentice Hall, New York (1962).Google Scholar
  24. [24]
    M. G. Fouad and N. Ibl,Electrochim. Acta 3 (1960) 233.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • G. H. Sedahmed
    • 1
  1. 1.Chemical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations