Journal of Applied Electrochemistry

, Volume 10, Issue 3, pp 351–355 | Cite as

Mass transfer at vertical cylinders under forced convection induced by the counter electrode gases

  • G. H. Sedahmed
Papers

Abstract

Mass transfer coefficients were measured for the deposition of copper from acidified copper sulphate solution at a vertical cylinder cathode stirred by oxygen evolved at a horizontal lead anode placed below the cylinder. Variables studied were: oxygen discharge rate, electrolyte concentration and cylinder height. The mass transfer coefficient was found to increase by a factor of 1.8–2.6 depending on oxygen discharge rate and cylinder height. The mass transfer coefficient was related to oxygen discharge rate and cylinder height by the equation:
$$K = 65.8 \times 10^{ - 4} \frac{{V^{0.358} }}{{h^{0.29} }}$$

Keywords

Oxygen Copper Convection Mass Transfer Counter Electrode 

List of symbols

K

mass transfer coefficient (cm s−1)

V

oxygen discharge rate (cm3 cm−2 s−1)

I

limiting current (A cm−2)

i

anodic current density (A cm−2)

Z

number of electrons involved in the reaction

F

Faraday's constant

h

electrode height (cm)

R

gas constant

T

temperature (K)

A

anode area (cm2)

P

oxygen pressure (atm)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Hine, M. Yasuda, R. Nakamura and T. Noda,J. Electrochem. Soc. 112 (1975) 1185.Google Scholar
  2. [2]
    R. E. De la Rue and C. W. Tobias,ibid 106 (1959) 827.Google Scholar
  3. [3]
    R. B. McMullin and F. N. Ruehlen,ibid 118 (1971) 1582.Google Scholar
  4. [4]
    N. Ibl and J. Venczél,Metalloberflache 24 (1970) 365.Google Scholar
  5. [5]
    N. Ibl,Chem, Ing. Techn. 43 (1971) 202.Google Scholar
  6. [6]
    L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013.Google Scholar
  7. [7]
    L. J. J. Janssen and J. G. Hoogland,ibid 18 (1973) 543.Google Scholar
  8. [8]
    L. J. J. Janssen,ibid 23 (1978) 81.Google Scholar
  9. [9]
    M. G. Fouad and G. H. Sedahmed,ibid 17 (1972) 665.Google Scholar
  10. [10]
    Idem, ibid 18 (1973) 55.Google Scholar
  11. [11]
    Idem, ibid 18 (1973) 279.Google Scholar
  12. [12]
    Idem, ibid 19 (1974) 861.Google Scholar
  13. [13]
    Idem, ibid 20 (1975) 615.Google Scholar
  14. [14]
    M. G. Fouad and G. H. Sedahmed, Extended Abstracts,27th Meeting of ISE, Zurich (1976) p. 52.Google Scholar
  15. [15 ]
    G. H. Sedahmed and L. W. Shemilt,J. Electrochem. Soc. 123 (1976) 950.Google Scholar
  16. [16]
    G. H. Sedahmed,J. Appl. Electrochem. 9 (1979) 37.Google Scholar
  17. [17]
    Idem, ibid 8 (1978) 399.Google Scholar
  18. [18]
    G. H. Sedahmed and L. W. Shemilt, to be published.Google Scholar
  19. [19]
    Idem, to be published.Google Scholar
  20. [20]
    V. A. Ettel, A. S. Gendron and B. V. Tilak,Metall. Trans. B,6B (1975) 31.Google Scholar
  21. [21]
    A. S. Gendron and V. A. Ettel,Canad. J. Chem. Eng. 5 (1975) 36.Google Scholar
  22. [22]
    V. A. Ettel, B. Tilak and A. S., Gendron,J. Electrochem. Soc. 121 (1974) 867.Google Scholar
  23. [23]
    V. G. Levich, ‘Physiocochemical Hydrodynamics’ Prentice Hall, New York (1962).Google Scholar
  24. [24]
    M. G. Fouad and N. Ibl,Electrochim. Acta 3 (1960) 233.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • G. H. Sedahmed
    • 1
  1. 1.Chemical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations