Applied Physics A

, Volume 35, Issue 4, pp 249–253 | Cite as

Disclosure of defects in YAG crystals by the thermoluminescence method

  • A. Niklas
Contributed Papers


The topograms revealing the anisotropic distribution of defects in the volume of monocrystalline YAG samples have been obtained by the thermoluminescence (TL) technique. It has also been shown that the anisotropic distribution of the lattice defects affects strongly the shape of the TL curves. The greatest changes in the TL intensity were observed in the areas of the samples distributed symmetrically every 120°. It was noted that the selective distribution of the TL intensity is caused mainly by the presence of the (211) facets as well as growth striations formed during the growth process. The groups of lines observed in the TL spectrum have been ascribed to the Tb3+ ions, excited owing to the radiationless energy transfer from the bound exciton states (BES).


61.70 61.80 71.35 78.55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Basterfield, M.J. Prescott, B. Cockayne: J. Mater. Sci.3, 33 (1968)Google Scholar
  2. 2.
    C.D. Brandle: Garnet Substrates for Magnetic Buble Films, Union Carbide Corporation Products Department, Report (1976), San Diego, CA 92123, USAGoogle Scholar
  3. 3.
    J.C. Brice: J. Crystal Growth6, 205 (1970)Google Scholar
  4. 4.
    A.G. Petrosyan, G.O. Shirinyan, K.L. Ovanesyan, A.A. Avetisyan: Krist. Tech.13, 43 (1978)Google Scholar
  5. 5.
    A. Trainor, B.E. Barlett: Solid State Electron.2, 106 (1961)Google Scholar
  6. 6.
    W.W. Webb: J. Appl. Phys.33, 1961 (1962)Google Scholar
  7. 7.
    P.J. Harrop: J. Mater. Sci.3, 206 (1968)Google Scholar
  8. 8.
    W.T. Stacy: J. Crystal Growth24/25, 137 (1974)Google Scholar
  9. 9.
    Cz. Janusz, W. Jeleński, A. Niklas: J. Crystal Growth57, 593 (1982)Google Scholar
  10. 10.
    F. Morehead: Phys. Rev. B17, 3432 (1978)Google Scholar
  11. 11.
    D.J. Robbins, B. Cockayne, J.L. Glasper, B. Lent: J. Electrochem. Soc.126, 1556 (1979)Google Scholar
  12. 12.
    A. Niklas: Appl. Phys. B34, 87 (1984)Google Scholar
  13. 13.
    S.P. Keller, G.D. Pettit: Phys. Rev.121, 1639 (1961)Google Scholar
  14. 14.
    J.A Koningstein: Phys. Rev.136, 717 (1964)Google Scholar
  15. 15.
    K.S. Thomas, S. Singh, G.H. Dieke: J. Chem. Phys.38, 2180 (1963)Google Scholar
  16. 16.
    A. Vahidov, E.M. Ibragimova, B. Kaipov, T.A. Tavshunskii, A.A. Yusupov: Radiacionnye yavleniya v nekotorykh lazernykh kristallakh, Izd. FAN Uz. SSR, Tashkent (1977) p. 59Google Scholar
  17. 17.
    D.J. Robbins: Adv. Phys.27, 499 (1978)Google Scholar
  18. 18.
    N.S. Rooze, N.A. Anisimov: Opt. Spectrosc.38, 627 (1975)Google Scholar
  19. 19.
    W. Hayes, M. Yamaga, D.J. Robbins, B. Cockayne: J. Phys. C13, 1085 (1980)Google Scholar
  20. 20.
    N.Yu. Konstantinov, L.G. Karaseva, V.V. Gromov: Dokl. Akad. Nauk. SSSR255, 631 (1980)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. Niklas
    • 1
  1. 1.Physics InstituteTeacher's AcademyOpolePoland

Personalised recommendations