Advertisement

Journal of comparative physiology

, Volume 103, Issue 2, pp 227–245 | Cite as

Photoperiodic determination of insect development and diapause

III. Effects of nondiel photoperiods
  • Stanley D. Beck
Article

Summary

The Photoperiodic Determination Model proposed earlier (I, II) is further elaborated, and its applicability to nondiel photoperiods tested. Model-generated predictions of diapause incidences were in good agreement with observed incidences among larvae of the European corn borer,Ostrinia nubilalis, reared under photoperiods from 15 to 50 hrs duration with scotophases of from 9 to 18 hrs.

Keywords

Corn European Corn Borer Determination Model Proposed Early Insect Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkisson, P. L.: Internal clocks and insect diapause. Science154, 234–241 (1966)Google Scholar
  2. Beck, S. D.: Photoperiodic induction of diapause in an insect. Biol. Bull.122, 1–12 (1962)Google Scholar
  3. Beck, S. D.: Physiology and ecology of photoperiodism. Bull. entomol. Soc. Amer.9, 8–16 (1963)Google Scholar
  4. Beck, S. D.: Time-measurement in insect photoperiodism. Amer. Natur.98, 329–346 (1964)Google Scholar
  5. Beck, S. D.: Environmental photoperiod and the programming of insect development. In: Evolution and environment (E. T. Drake, ed.), p. 279–296. New Haven and London: Yale University Press 1968aGoogle Scholar
  6. Beck, S. D.: Insect photoperiodism, 288 pp. New York and London: Academic Press 1968bGoogle Scholar
  7. Beck, S. D.: Photoperiodic determination of insect development and diapause. I. Oscillators, hourglasses, and a determination model. J. comp. Physiol.90, 275–295 (1974a)Google Scholar
  8. Beck, S. D.: Photoperiodic determination of insect development and diapause. II. The determination gate in a theoretical model. J. comp. Physiol.90, 297–310 (1974b)Google Scholar
  9. Beck, S. D., Alexander, N.: Chemically and photoperiodically induced diapause development in the European corn borer,Ostrinia nubilalis. Biol. Bull.126, 175–184 (1964)Google Scholar
  10. Beck, S. D., Hanec, W.: Diapause in the European corn borer,Pyrausta nubilalis. J. Insect Physiol.4, 304–318 (1960)Google Scholar
  11. Brady, J.: The physiology of insect circadian rhythms. Adv. Insect Physiol.10, 1–115 (1974)Google Scholar
  12. Claret, J.: La levée photopériodique de la diapause nymphale dePieris brassicae (L). C. R. Acad. Sci. (Paris)277, 733–735 (1973)Google Scholar
  13. Danilevskii, A. S.: Photoperiodism and seasonal development of insects. 283 pp. London: Oliver and Boyd 1965Google Scholar
  14. Danilevskii, A. S., Goryshin, N. I., Tyshchenko, V. P.: Biological rhythms in terrestrial arthropods. Ann. Rev. Entomol.15, 201–244 (1970)Google Scholar
  15. Goryshin, N. I., Tyshchenko, V. P.: On the accumulation of the photoperiodic information during the diapause induction inBaranthra brassicae L. [in Russian]. Entomol. Rev.52, 249–255 (1973)Google Scholar
  16. Hamner, W.: Hour-glass dusk and rhythmic dawn timers control diapause in the codling moth. J. Insect Physiol.15, 1499–1504 (1969)Google Scholar
  17. Lees, A. D.: The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphidMegoura viciae Buckton. II. The operation of the “interval timer” in young clones. J. Insect Physiol.4, 154–175 (1960)Google Scholar
  18. Lees, A. D.: Photoperiodism in insects. Photophysiology4, 47–137 (1968)Google Scholar
  19. Pittendrigh, C. S.: The circadian oscillation inDrosophila pupae: A model for the photoperiodic clock. Z. Pflanzenphysiol.54, 275–307 (1966)Google Scholar
  20. Saunders, D. S.: Circadian clock in insect photoperiodism. Science168, 601–603 (1970)Google Scholar
  21. Saunders, D. S.: The temperature-compensated photoperiodic clock ‘programming’ development and pupal diapause in the flesh-fly,Sarcophaga argyrostoma. J. Insect Physiol.17, 801–812 (1971)Google Scholar
  22. Saunders, D. S.: Circadian control of larval growth rate inSarcophaga argyrostoma. Proc. nat. Acad. Sci. (Wash.)69, 2738–2740 (1972)Google Scholar
  23. Saunders, D. S.: The photoperiodic clock in the fleshfly,Sarcophaga argyrostoma. J. Insect Physiol.19, 1941–1954 (1973)Google Scholar
  24. Saunders, D. S.: Evidence for ‘dawn’ and ‘dusk’ oscillators in theNasonia photoperiodic clock. J. Insect Physiol.20, 77–88 (1974)Google Scholar
  25. Truman, J. W.: Hour-glass behavior of the circadian clock controlling eclosion of the silkwormAntheraea pernyi. Proc. nat. Acad. Sci. (Wash.)68, 595–599 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Stanley D. Beck
    • 1
  1. 1.Department of EntomologyUniversity of WisconsinMadisonUSA

Personalised recommendations