Transport in Porous Media

, Volume 10, Issue 2, pp 197–202 | Cite as

Constitutive equation of a gas-filled two-phase medium

  • T. Strzelecki
  • J. Bauer
  • J. L. Auriault
Article

Abstract

A set of equations governing the consolidation of a two-phase medium consisting of a porous elastic skeleton saturated with a highly compressible liquid (gas), is described. The homogenization method was utilized to deduce the equations. For the equivalent macroscopic medium, mass and momentum conservation equations and the flow equation of pore liquid are presented. Sample material constants were calculated using laboratory test results which were carried out at the Institute of Geotechnics, Technical University of Wroclaw.

Key words

Constitutive equation consolidation homogenization two-phase medium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auriault, J. L., Strzelecki, T., Bauer, J., He S., 1990, Porous deformable media saturated by a very compressible fluid: quasi-static,Eur. J. Mech., A/Solids 9, 373–392.Google Scholar
  2. Bauer, J., Gergowicz, Z., and Kaczmarek, J., 1987, Etablissement des constantes du modelé modifie de Biot décrivant les charbons gazeiferes,2 eme Colloque Franco-Polonais de Géotechnique, Nancy, 89–108.Google Scholar
  3. Biot, M. A., 1941, General theory of three dimensional consolidation,J. Appl. Phys. 12, 115.Google Scholar
  4. Bensoussan, A., Lions, J.-L., and Papanicolaou, G., 1978,Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam.Google Scholar
  5. Sanchez-Palencia, E., 1980,Nonhomogeneous Media and Vibration Theory, Springer-Verlag, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • T. Strzelecki
    • 1
  • J. Bauer
    • 1
  • J. L. Auriault
    • 2
  1. 1.Institute of GeotechnicsTechnical University of WrocławWrocławPoland
  2. 2.Institut de Mechanique de GrenobleGrenobleFrance

Personalised recommendations