Advertisement

Transport in Porous Media

, Volume 12, Issue 2, pp 125–141 | Cite as

A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks

  • Claude Hammecker
  • Jean-Didier Mertz
  • Christian Fischer
  • Daniel Jeannette
Article

Abstract

The cylindrical model is discussed and a new tube model is proposed to describe capillary imbibition kinetics in porous sedimentary rocks. The tube consists of a periodic succession of a single hollow spherical element of which the geometry is defined by the sphere radius and the sphere access radius. These two parameters are estimated experimentally for four rock types from their specific surface areas. Introducing those parameters in the model capillary imbibition kinetics, parameters are calculated and compared with the experimental ones. A direct relation between imbibition kinetics and specific surface area has been pointed out.

Key words

Capillary imbibition kinetics tube model spherical pore shape numerical simulation sedimentary rocks specific surface area surface roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chatzis, I., and Dullien, F. A. L., 1981, Mercury porosimetry curves of sandstones. Mechanisms of mercury penetration and withdrawal,Powder Technol. 29, 117–125.Google Scholar
  2. Dullien, F. A. L., El-Sayed, M. S., and Batra, V. K., 1977, Rate of capillary rise in porous media with nonuniform pores,J. Colloid Interface Sci. 60, 497–506.Google Scholar
  3. Dullien, F. A. L., 1979,Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, pp. 291–300.Google Scholar
  4. Dullien, F. A. L., 1981, Wood's metal porosimetry and it's relation to mercury porosimetry,Powder Technol. 29, 109–116.Google Scholar
  5. Dullien, F. A. L., Zarcone, C., Macdonald, I. F., Collins, A., and Bochard, R. D. E., 1989, The effect of surface roughness on the capillary pressure curves and the height of capillary rise in glass bead packs,J. Colloid Interface Sci. 127, 362–372.Google Scholar
  6. Good, R. J. and Mikhail, R. S., 1981, The contact angle in mercury intrusion porosimetry,Powder Technol. 29, 53–62.Google Scholar
  7. Kusakov, M. M. and Nekrasov, D. N., Capillary hysteresis in the rise of wetting liquids in single capillaries and porous bodies, in Deryagin, B. V., 1966,Research in surface forces, New-York, pp. 193–202.Google Scholar
  8. Levine, S., Lowndes, J., and Reed, P., 1980, Two phase fluid flow and hysteresis in a periodic capillary tube,J. Colloid Interface Sci. 77, 253–263.Google Scholar
  9. Lowel, S. and Shields, J. E., 1984,Powder surface area and porosity, Chapman and Hall, London, pp. 1–5.Google Scholar
  10. Marmur, A., 1989, Capillary rise and hysteresis in periodic porous media,J. Colloid Interface Sci. 129, 278–285.Google Scholar
  11. Mertz, J. D., 1989,RÔle des structures de porosité dans les propriétés de transport, thèse Université Louis Pasteur, Strasbourg.Google Scholar
  12. Szekely, J., Neumann, A. W., and Chuang, Y. K., 1971, The rate of capillary penetration and the applicability of the Washburn equation,J. Colloid Interface Sci. 35, 273–283.Google Scholar
  13. Van Brakel, J., Pore space models for transport phenomena in porous media. Review and evaluation with special emphasis on capillary transport,Powder Technol. 11, 205–236.Google Scholar
  14. Washburn, E. W., 1921, The dynamic of capillary flow,Phys. Rev. 17, 273–283.Google Scholar
  15. White, L. R., 1982,J. Colloid Interface Sci. 90, 536.Google Scholar
  16. Zinszner, B. and Meynot, C., 1982, Visualisation des propriétés capillaires des roches reservoirs,Rev. Inst. FranÇ. du Pétrole 37, 337–361.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Claude Hammecker
    • 1
  • Jean-Didier Mertz
    • 1
  • Christian Fischer
    • 1
  • Daniel Jeannette
    • 1
  1. 1.Centre de Géochimie de la Surface (C.N.R.S.)Strasbourg CedexFrance

Personalised recommendations