Applied Physics A

, Volume 35, Issue 3, pp 135–140 | Cite as

Infrared absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration: Evidence for two types of enhanced surface electric fields

  • A. Hatta
  • Y. Suzuki
  • W. Suëtaka
Contributed Papers

Abstract

Infrared absorption enhancement of m- and p-nitrobenzoic acid deposited on thin-evaporated silver films has been investigated using the Kretschmann's ATR coupling method. The absorption spectra provide direct evidence that enhancement is prominent only for vibrations of the first monolayer adsorbed on the Ag surface. It is shown that all of the vibrational modes observed obey the normal dipole selection rule. Moreover, it was found that there exist two types of absorption enhancement; the first is enhanced (∼300) by both p- and s-polarized radiation, and the second is enhanced (∼60) by p-polarized radiation alone. The Ag film thickness optimum is about 50 Å in the former case and about 200 Å in the latter. The enhancement insensitive to the polarization state of radiation can well be explained by the excitation of the transverse collective electron resonance of the Ag islands, whereas that obtained by p-polarized radiation may be due to the excitation of delocalized surface plasmons modified by surface roughness. The image-dipole effect may also be significant in the mechanisms.

PACS

68 78 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.K. Chang, T.E. Furtak (eds.):Surface Enhanced Raman Scattering (Plenum Press, New York 1982)Google Scholar
  2. 2.
    E. Burstein, S. Lundquist, D.L. Mills: In [Ref. 1, p. 67].Google Scholar
  3. 2.a
    M. Cardona, G. Güntherodt (eds.):Light Scattering in Solids IV, Topics Appl. Phys.54 (Springer, Berlin, Heidelberg, NewYork 1984) Chaps. 6 and 7Google Scholar
  4. 3.
    C.Y. Chen, I. Davoli, G. Ritchie, E. Burstein: Surf. Sci.101, 363 (1980)Google Scholar
  5. 4.
    E. Kretschmann: Z. Phys.241, 313 (1971)Google Scholar
  6. 5.
    M. Moskovits: J. Chem. Phys.69, 4159 (1978)Google Scholar
  7. 6.
    R. Dornhaus, R.E. Benner, R.K. Chang, I. Chabay: Surf. Sci.101, 367 (1980)Google Scholar
  8. 7.
    A. Hartstein, J.R. Kirtley, J.C. Tsang: Phys. Rev. Lett.45, 201 (1980)Google Scholar
  9. 8.
    A. Hatta, T. Ohshima, W. Suëtaka: Appl. Phys. A29, 71 (1982)Google Scholar
  10. 9.
    N.J. Harrick:Internal Reflection Spectroscopy (Interscience, New York 1967)Google Scholar
  11. 10.
    C.Y. Chen, E. Burstein, S. Lundquist: Solid State Commun.32, 63 (1979)Google Scholar
  12. 11.
    C.A. Murray: In [Ref. 1, p. 203]Google Scholar
  13. 12.
    P.N. Sanda, J.M. Warlaumont, J.E. Demuth, J.C. Tsang, K. Christmann, J.A. Bradley: Phys. Rev. Lett.45, 1519 (1980)Google Scholar
  14. 12.a
    C.A. Murray, D.L. Allara, M. Rhinewine: Phys. Rev. Lett.46, 57 (1981)Google Scholar
  15. 13.
    R.S. Sennett, G.D. Scott: J. Opt. Soc. Am.40, 203 (1950)Google Scholar
  16. 14.
    J.I. Gersten, A. Nitzan: In [Ref. 1, p. 89]Google Scholar
  17. 15.
    A. Otto: Z. Phys.216, 398 (1968)Google Scholar
  18. 16.
    A. Hjortsberg, W.P. Chen, E. Burstein, M. Pomerantz: Opt. Commun.25, 65 (1978)Google Scholar
  19. 17.
    J. Schoenwald, E. Burstein, J.M. Elson: Solid State Commun.12, 185 (1973)Google Scholar
  20. 18.
    Y.J. Chabal, A.J. Sievers: Appl. Phys. Lett.32, 90 (1978)Google Scholar
  21. 18.a
    G.N. Zhizhin, M.A. Moskalova, E.V. Shomina, V.A. Yakovlev: inSurface Polaritons, ed. by V.M. Agranovich, D.L. Mills (North-Holland, Amsterdam 1982) p. 93Google Scholar
  22. 19.
    Y.J. Chabal, A.J. Sievers: Phys. Rev. Lett.44, 944 (1980); Phys. Rev.B24, 2921 (1981)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. Hatta
    • 1
  • Y. Suzuki
    • 1
  • W. Suëtaka
    • 1
  1. 1.Laboratory of Interface Science of Metals, Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations