Skip to main content
Log in

The mechanism of anodic oxidation of alloys

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanism of formation of barrier-type anodic films on alloys containing valve and non-valve metals is considered in terms of data yielded by electrochemical methods, a.c. impedance measurements, conventional and scanning electron microscopy and chemical and electron probe microanalysis. The alloying elements enter the film virtually in their alloy proportions. With alloys giving oxides essentially insoluble in the electrolytes, such as Nb-Zr, the metal constituent concentration profiles across the film are determined largely by the cationic and anionic transport numbers and the cationic mobilities. Where one of the alloying elements tends to give soluble compounds, such as vanadium in V-Nb alloys, this situation is complicated by preferential dissolution of that element. The film properties depend on the solution used but the main result, that relatively small additions of valve metals to metals such as vanadium permit thick barrier-type films to be formed, is unaffected. All the as-formed films are initially pore-free, but those produced on alloys rich in non-valve metal are prone to subsequent leaching, with detectable pore formation. Analysis proves that the films on V-Nb alloys are enriched in valve metal, particularly towards the outer surface. This explains why these films can be formed and also why the impedance characteristics and resistance to leaching improve as the film thickens, with the material rich in valve metal developing into an outer, more protective and possibly thicker sheath. The presence of a mass-transfer boundary layer, rich in nonvalve metal dissolution products, also promotes film formation. Films formed in certain nonaqueous electrolytes are richer in the non-valve metal and so are more readily leached in water subsequently, but apparently are also chemically different. Special experiments, involving leaching and reanodizing in various solutions, and the formation of duplex films, provide important data, appearing to indicate substantial anionic movement during film growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L. Kolski,J. Electrochem. Soc.,112 (1965) 272.

    Google Scholar 

  2. R. B. Hand,British Patent 998,708 (1964).

    Google Scholar 

  3. L. Mandelkorn and T. W. Dakin (Westinghouse Electric Corporation),Belgian Patent 668,967 (1965).

    Google Scholar 

  4. T. W. Dakin and W. C. Divens (Westinghouse Electric Corporation),French Patent 1, 450,868 (1966).

  5. M. Hoffman and R. G. Maier,Prakt. Metallogr.,3 (1966) 378.

    Google Scholar 

  6. O. Rudiger and W. R. Fischer,Tech. Mit Krupp,15 (1957) 194.

    Google Scholar 

  7. E. Ince and H. Margolin,J. Metals,6 (1954) 346.

    Google Scholar 

  8. N. D. Tomashov and T. Matveeva,Anodnaya Zaschita Metal Mezhvuz Konf., (1964) p. 433.

  9. A. F. Bogoyavlenskii and S. A. Borodina,Anodnaya Zaschita Metal Mezhvuz Konf., (1964) p. 440.

  10. K. O. Beck and R. C. Henderson,U.S. Patent 2,949,411 (1960).

    Google Scholar 

  11. J. B. Cotton and M. K. McQuillan,U.S. Patent 3,118,828 (1964).

    Google Scholar 

  12. General Electric Company,British Patent 909,295 (1962).

    Google Scholar 

  13. General Electric Company,British Patent 896,332 (1962).

    Google Scholar 

  14. A. N. Salomon and J. W. Carson,U.S. Patent 3,255,389 (1966).

    Google Scholar 

  15. A. N. Salomon,U.S. Patent 3,126,503 (1964).

    Google Scholar 

  16. L. L. Shreir and R. A. Piggott,British Patent 962,904 (1964).

    Google Scholar 

  17. J. M. Peters,U.S. Govt. Res. Dev. Rep., Ad 639, 419, 41, 116(1966).

  18. T. P. Hoar and D. C. Mears,Proc. Roy. Soc.,A294 (1966) 486.

    Google Scholar 

  19. R. H. Lorenz and A. B. Michael,Electrochem. Tech.,2 (1964) 160.

    Google Scholar 

  20. H. W. Long and T. L. Kolski,Electrochem. Tech.,3 (1965) 67, 71.

    Google Scholar 

  21. M. Mohler and W. E. Tragert,U.S. Patent 3,223,899 (1965).

    Google Scholar 

  22. R. D. Misch and F. H. Gunzel Jr.,J. Electrochem. Soc.,106 (1959) 16.

    Google Scholar 

  23. R. D. Misch, Argonne National Laboratory Rept.,ANL, 6149 (1960).

  24. R. E. Salomon, W. M. Graven, and G. B. Adams Jr.,J. Chem. Phys.,32 (1960) 310.

    Google Scholar 

  25. H. Braun, R. Kieffer and K. Sedlatschek,Planseeber. fur Pulvermet Allurgie,6 (1958) 104.

    Google Scholar 

  26. U. E. Wolff,Trans. A.S.M.,55 (1962) 363.

    Google Scholar 

  27. G. C. Wood and A. J. Brock,Nature,209 (1966) 773.

    Google Scholar 

  28. G. C. Wood and A. J. Brock,Trans. Inst. Metal Finishing,44 (1966) 189.

    Google Scholar 

  29. L. Young, Anodic Oxide Films (1961), Academic Press, London and New York.

    Google Scholar 

  30. L. Masing, J. E. Orme, and L. Young,J. Electrochem. Soc.,108 (1961) 437.

    Google Scholar 

  31. P. J. Harrop and J. N. Wanklyn,Brit. J. Appl. Phys.,16 (1965) 155.

    Google Scholar 

  32. G. C. Adams Jr., C. E. Borchers, and P. van Rysselberghe, U.S. Atomic Energy CommissionAECU (1957), p. 3388.

  33. C. Pearson and G. C. Wood,Corros. Sci.,9 (1969) 367.

    Google Scholar 

  34. G. C. Wood and C. Pearson,Corros. Sci.,7 (1967) 121.

    Google Scholar 

  35. G. C. Wood, C. Pearson, A. J. Brock, and S. W. Khoo,J. Electrochem. Soc.,114 (1967) 145.

    Google Scholar 

  36. S. W. Khoo, M.Sc. Dissertation (1966) University of Manchester.

  37. S. W. Khoo, Ph.D. Thesis (1968) University of Manchester.

  38. J. F. Dewald,J. Electrochem. Soc.,104 (1957) 244.

    Google Scholar 

  39. H. W. Pickering and C. Wagner,J. Electrochem. Soc.,114 (1967) 698.

    Google Scholar 

  40. J. A. Davies, B. Domeij, J. P. S. Pringle, and F. Brown,J. Electrochem. Soc.,112 (1965) 675.

    Google Scholar 

  41. T. P. Hoar and N. F. Mott,J. Phys. Chem. Solids,9 (1959) 97.

    Google Scholar 

  42. T. P. Hoar and J. Yahalom,J. Electrochem. Soc.,110 (1963) 614.

    Google Scholar 

  43. M. A. Heine and M. J. Pryor,J. Electrochem. Soc.,110 (1963) 1205.

    Google Scholar 

  44. A. J. Brock and G. C. Wood,Electrochim. Acta,8 (1967) 847.

    Google Scholar 

  45. J. P. O'Sullivan and G. C. Wood,Proc. Roy. Soc.,A317 (1970) 511.

    Google Scholar 

  46. P. H. G. Draper,Electrochim. Acta,8 (1963) 847.

    Google Scholar 

  47. J. J. Randall Jr., W. J. Bernard, and R. R. Wilkinson,Electrochim. Acta.,10 (1965) 183.

    Google Scholar 

  48. G. T. Rogers, P. H. G. Draper, and S. S. Wood,Electrochim. Acta.,13 (1968) 251.

    Google Scholar 

  49. J. F. Murphy and C. E. Michelson, Proceedings of Conference on Anodizing Aluminium (1961), Aluminium Development Association, p. 83.

  50. C. J. Smithells, ‘Metals Reference Book,’ Vol. 1 (1962), Butterworth, London, pp. 136, 202.

    Google Scholar 

  51. D. M. Cheseldine,J. Electrochem. Soc.,111 (1964) 1128.

    Google Scholar 

  52. R. G. Keil and R. E. Salomon,J. Electrochem. Soc.,115 (1968) 628.

    Google Scholar 

  53. M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’ (1966), Pergamon Press and Cebelcor.

  54. N. D. Tomashov and T. V. Matveeva,Translation of Zaschita Metallov,2 (1966) 429.

    Google Scholar 

  55. J. B. MacChesney, J. F. Potter, and H. J. Guggenheim,J. Electrochem. Soc.,115 (1968) 52.

    Google Scholar 

  56. G. A. Rozgonyi and W. J. Politi,J. Electrochem. Soc.,115 (1968) 57.

    Google Scholar 

  57. J. S. Littler, A. I. Mallet, and W. A. Waters,J. Chem. Soc.,2 (1960) 2761.

    Google Scholar 

  58. J. Selbin,Chemical Review,65 (1965) 153.

    Google Scholar 

  59. W. S. Goruk, L. Young, and F. G. R. Zobel, ‘Modern Aspects of Electrochemistry’, edited by J. O. M. Bockris, Butterworth, London,4 (1966) 176.

    Google Scholar 

  60. R. H. Doremus,J. Electrochem. Soc.,115 (1968) 181.

    Google Scholar 

  61. G. Tammann,Z. Anorg Chem.,1 (1919) 107.

    Google Scholar 

  62. H. Gerischer,Werkstoffe u Korrosion,12 (1961) 608.

    Google Scholar 

  63. F. P. Fehlner and N. F. Mott,Oxidation of Metals,2 (1970) 59.

    Google Scholar 

  64. G. Amsel, C. Cherki, G. Feuillade, and J. P. Nadai,J. Phys. Chem. Solids,30 (1969) 2117.

    Google Scholar 

  65. J. P. Pemsler, Presentation at N.A.C.E. Annual Conference, Philadelphia, March 1970; J. P. Pemsler and G. C. Wood, unpublished work.

  66. M. J. Dignam and D. B. Gibbs,J. Phys. Chem. Solids,30 (1969) 375.

    Google Scholar 

  67. T. P. Hoar,J. Electrochem. Soc.,117 (1970) 17C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, G.C., Khoo, S.W. The mechanism of anodic oxidation of alloys. J Appl Electrochem 1, 189–206 (1971). https://doi.org/10.1007/BF00616942

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616942

Keywords

Navigation