Skip to main content
Log in

Surface tension models with different viscosities

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Surface tension in ILB models for fluids with different viscosities and different numbers of rest populations is derived, starting from the so-called mechanical definition. It is shown that the standard perturbation, inserted into these models in order to create surface tension, should be slightly modified for models with different viscosities in order to avoid the dependence of surface tension upon the actual phase distribution. The analytical results are numerically confirmed by mechanical and bubble tests. It is demonstrated also that the perturbation of the lattice Boltzmann equation gives rise to the appearance of anisotropic terms in population solutions related to anomalous currents and density fluctuations. When particular values of the eigenvalues of the collision operators are used, these spurious currents are annihilated in the time-independent solutions of the mechanical tests in arbitrarily inclined channels when bounce-back conditions are imposed at the solid boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, C., d'Humières, D. and Rothman, D.: 1994, Surface tension and interface fluctuations in immiscible lattice gases,J. Phys. I, France 4, 29–46.

    Google Scholar 

  • Appert, C. and Zaleski, S.: 1990, A lattice gas with a liquid-gas transition,Phys. Rev. Lett. 64, 1–4.

    Google Scholar 

  • Appert, C., Rothman, D. H. and Zaleski, S.: 1991, A liquid-gas model on a lattice,Physica D,47, 85–96.

    Google Scholar 

  • Appert, C. and Zaleski, S.: 1993, Dynamical liquid-gas phase transition,J. Phys. II, France 3, 309–337.

    Google Scholar 

  • Appert, C.: 1993, Transition de phase dynamique de type liquide-gaz et création d'interfaces dans un gaz sur réseau, Thèse de Doctorat de l'Université Paris VI.

  • Burgess, D., Hayot, F. and Saam, W. F.: 1988, Model for surface tension in lattice-gas hydrodynamics,Phys. Rev. A 38, 3589–3592.

    Google Scholar 

  • Chen, S., Wang, Z., Shan, X. and Doolen, G.: 1992, Lattice-Boltzmann computational fluid dynamics in three dimensions,J. Stat. Phys. 68, 379–400.

    Google Scholar 

  • Cornubert, R., d'Humières, D. and Livermore, D.: 1991, A Knudsen layer theory for lattice gases,Physica D,47, 241–259.

    Google Scholar 

  • Edwards, D. A., Brenner, H. and Wasan, D. T.: 1991, Interfacial transport processes and rheology,Butterworth-Heinemann Series in Chemical Engineering.

  • Frisch, U., Hasslacher, B. and Pomeau, Y.: 1986, Lattice gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56, 1505–1508.

    Google Scholar 

  • Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J. P.: 1987, Lattice gas hydrodynamics in two and three dimensions,Complex Systems,1, 649–707.

    Google Scholar 

  • Ginzbourg, I. and Adler, P. M.: 1994a, Boundary flow condition analysis for the three-dimensional lattice Boltzmann model,J. Phys. II, France,4, 191–214.

    Google Scholar 

  • Ginzbourg, I. and Adler, P. M: 1994b, Boundary conditions at a plane fluid-interface in the FCHC lattice Boltzmann model, in preparation.

  • Grunau, D. W.: 1993, Lattice methods for modeling hydrodynamics, PhD Thesis, Colorado State University.

  • Gunstensen, A. K., Rothman, D. H., Zaleski, S. and Zanetti, G.: 1991, Lattice-Boltzmann model of immiscible fluids,Phys. Rev. A 43, 107–114.

    Google Scholar 

  • Gunstensen, A. K. and Rothman, D. H.: 1991, A Galilean-invariant two-phase lattice gas,Physica D 47, 53–63.

    Google Scholar 

  • Gunstensen, A. K. and Rothman, D. H.: 1992, Microscopic modeling of immiscible fluids in three dimensions by a lattice-Boltzmann method,Europhys. Lett. 18, 157–161.

    Google Scholar 

  • Gunstensen, A.K.: 1992, Lattice-Boltzmann studies of multiphase flow through porous media, PhD Thesis, MIT.

  • Hayot, F.: 1991, Fingering instability in a lattice gas,Physica D 47, 64–71.

    Google Scholar 

  • Higuera, F. J. and Jimenez, J.: 1989, Boltzmann approach to lattice gas simulations,Europhys. Lett. 9, 663–668.

    Google Scholar 

  • Higuera, F. J., Succi, S. and Benzi, R.: 1989, Lattice gas dynamics with enhanced collisions,Europhys. Lett. 9, 345–349.

    Google Scholar 

  • d'Humières, D., Lallemand, P. and Frisch, U.: 1986, Lattice gas models for 3D hydrodynamics,Europhys. Lett. 2, 291–297.

    Google Scholar 

  • d'Humières, D. and Lallemand, P.: 1987, Numerical simulations of hydrodynamics with lattice gas automata in two dimensions,Complex Systems 1, 599–632.

    Google Scholar 

  • McNamara, G. R. and Zanetti, G.: 1988, Use of the Boltzmann equation to simulate lattice-gas automata,Phys. Rev. Lett. 61, 2332–2335.

    Google Scholar 

  • Rem, P. C. and Somers, J. A.: 1989, Cellular automata on a transputer network, in R. Monaco (ed),Discrete Kinetic Theory, Lattice Gas Dynamics, and Foundation of Hydrodynamics, World Scientific, Singapore, pp. 268–275.

    Google Scholar 

  • Rothman, D. H. and Keller, J. M.: 1988, Immiscible cellular-automaton fluids,J. Statist. Phys. 5, 1119–1127.

    Google Scholar 

  • Rothman, D. H.: 1990, Macroscopic laws for immiscible two-phase flow in porous media: results from numerical experiments,J. Geophys. Res. B95, 8663–8674.

    Google Scholar 

  • Rowlinson J. and Widom, B.: 1982,Molecular Theory of Capillarity, Clarendon Press, Oxford.

    Google Scholar 

  • Somers, J. A. and Rem, P. C.: 1991, Analysis of surface tension in two phase lattice gases,Physica D47, 39–46.

    Google Scholar 

  • Succi, S., Foti, E. and Higuera, F.: 1989, Three-dimensional flows in complex geometries with the lattice Boltzmann method,Europhys. Lett. 10, 433–438.

    Google Scholar 

  • Zanetti, G.: 1991, The hydrodynamics of lattice gas automata,Physica D47, 30–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzbourg, I., Adler, P.M. Surface tension models with different viscosities. Transp Porous Med 20, 37–76 (1995). https://doi.org/10.1007/BF00616925

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616925

Key words

Navigation