Skip to main content
Log in

Lattice-Boltzmann simulations of flow through Fontainebleau sandstone

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We report preliminary results from simulations of single-phase and two-phase flow through three-dimensional tomographic reconstructions of Fontainebleau sandstone. The simulations are performed with the lattice-Boltzmann method, a variant of lattice-gas cellular-automation models of fluid mechanics. Simulations of single-phase flow on a sample of linear size 0.2 cm yield a calculated permeability in the range 1.0–1.5 darcys, depending on direction, which compares qualitatively well with a laboratory measurement of 1.3 darcys on a sample approximately an order of magnitude larger. The sensitivity of permeability calculations to sample size, grid resolution, and choice of model parameters is quantified empirically. We also present a qualitative study of immiscible two-phase flow in a sample of linear size 0.05 cm; simulations of both drainage and imbibition are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, P.: 1992,Porous Media: Geometry and Transports, Butterworth/Heinemann, London.

    Google Scholar 

  • Benzi, R., Succi, S., and Vergassola, M.: 1992, The lattice Boltzmann equation: Theory and applications,Phys. Rep. 222, 145–197.

    Google Scholar 

  • Cancelliere, A., Chang, C., Foti, E., Rothman, D., and Succi, S.: 1990, The permeability of a random medium: Comparison of simulation with theory,Phys. Fluids A 2, 2085.

    Google Scholar 

  • Chandler, R., Koplik, J., Lerman, K., and Willemsen, J.: 1982, Capillary displacement and percolation in porous media,J. Fluid Mech. 119, 249–267.

    Google Scholar 

  • Chen, H., Chen, S., and Matthaeus, W. H.: 1992, Recovery of the Navier-Stokes equations using a lattice gas Boltzmann method,Phys. Rev. A 45, R5339–5342.

    Google Scholar 

  • Chen, S., Diemer, K., Doolen, G., Eggert, K., Fu, C., Gutman, S., and Travis, B. J.: 1991, Lattice gas automata for flow through porous media,Physica D 47, 72–84.

    Google Scholar 

  • Cornubert, R., d'Humiéres, D., and Levermore, D.: 1991, A Knudsen layer theory for lattice gases,Physica D 47, 241.

    Google Scholar 

  • Cushman, J. H. (ed): 1990,Dynamics of Fluids in Heirarchical Porous Media, Academic Press, San Diego.

    Google Scholar 

  • Dias, M. and Payatakes, A.: 1986a, Network models for two-phase flow in porous media, Part 1. Immiscible microdisplacement of non-wetting fluids,J. Fluid Mech. 164, 305–336.

    Google Scholar 

  • Dias, M. and Payatakes, A.: 1986b, Network models for two-phase flow in porous media, Part 2. Motion of oil ganglia,J. Fluid Mech. 164, 337–358.

    Google Scholar 

  • Flannery, B. P., Deckman, H. W., Roberge, W. G., and D'Amico, K. L.: 1987, Three-dimensional X-ray microtomography,Science 237, 1439–1444.

    Google Scholar 

  • Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., and Rivet, J.-P.: 1987, Lattice gas hydrodynamics in two and three dimensions,Complex Systems 1, 648.

    Google Scholar 

  • Frisch, U., Hasslacher, B., and Pomeau, Y.: 1986, Lattice-gas automata for the Navier-Stokes equations,Phys. Rev. Lett. 56, 1505–1508.

    Google Scholar 

  • Ginzbourg, I. and Adler, P. M.: 1994, Boundary flow condition analysis for the three-dimensional lattice-Boltzmann model,J. Phys. II France 4, 191–214.

    Google Scholar 

  • Giordano, R. M., Salter, S. J., and Mohanty, K.: 1985, SPE 14365: The effects of permeability variations on flow in porous media, inProc. 60th Ann. Tech. Conf. and Exhibition Soc. Petroleum Engrs., Las Vegas, Nevada, September 22–25, 1985.

  • Gunstensen, A. K. and Rothman, D. H.: 1992, Microscopic modeling of immiscible fluids in three dimensions by a lattice-Boltzmann method,Europhys. Lett. 18(2), 157–161.

    Google Scholar 

  • Gunstensen, A. K. and Rothman, D. H.: 1993, Lattice-Boltzmann studies of two-phase flow through porous media,J. Geophys. Res. 98, 6431–6441.

    Google Scholar 

  • Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G.: 1991, A lattice-Boltzmann model of immiscible fluids,Phys. Rev. A 43, 4320–4327.

    Google Scholar 

  • Henriette, A., Jacquin, C. G., and Adler, P. M.: 1989, The effective permeability of heterogeneous porous media,Physico-Chem. Hydrodyn. 11, 63–80.

    Google Scholar 

  • Kohring, G.: 1991, Calculation of the permeability of porous media using hydrodynamic cellular automata,J. Stat. Phys. 63, 411–418.

    Google Scholar 

  • Koplik, J. and Lasseter, T.: 1985, One- and two-phase flow in network models of porous media,Chem. Eng. Comm. 26, 285–295.

    Google Scholar 

  • Martys, N. and Garboczi, E. J.: 1992, Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media,Phys. Rev. B 46, 6080.

    Google Scholar 

  • Martys, N., Torquato, S., and Bentz, D.: 1994, Universal scaling fluid permeability for sphere packings,Phys. Rev. E 50, 403.

    Google Scholar 

  • Matheron, G.: 1967,Eléments pour une théorie des milieux poreux, Massen, Paris.

    Google Scholar 

  • Qian, Y., D'Humiéres, D., and Lallemand, P.: 1992, Lattice BGK models for Navier-Stokes equation,Europhys. Lett. 17(6), 419–484.

    Google Scholar 

  • Rothman, D. H.: 1988, Cellular-automation fluids: A model for flow in porous media,Geophysics 53, 509–518.

    Google Scholar 

  • Rothman, D. H.: 1990, Macroscopic laws for immiscible two-phase flow in porous media: Results from numerical experiments,J. Geophys. Res. 95, 8663.

    Google Scholar 

  • Rothman, D. H. and Zaleski, S.: 1994, Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow,Rev. Modern Phys. 66, 1417–1479.

    Google Scholar 

  • Schwartz, L. M., Auzerais, F., Dunsmuir, J., Martys, N., Bentz, D. P., and Torquato, S.: 1994, Transport and diffusion in three-dimensional composite media,Physica A 207, 28–36.

    Google Scholar 

  • Schwartz, L. M., Martys, N., Bentz, D. P., Garboczi, E. J., and Torquato, S.: 1993, Cross-property relations and permeability estimation in model porous media,Phys. Rev. E 48, 4584.

    Google Scholar 

  • Soll, W., Chen, S., Eggert, K., Grunau, D., and Janecky, D.: 1994, Application of the lattice-Boltzmann/lattice gas technique to multi-fluid flow in porous media, in A. Peters (ed),Computational Methods in Water Resources X, Kluwer Acad. Publ. Dordrecht, pp. 991–999.

    Google Scholar 

  • Spanne, P., Thovert, J. F., Jacquin, C. J., Lindquist, W. B., Jones, K. W., and Adler, P. M.: 1994, Synchrotron computed microttomography of porous media: topology and transports,Phys. Rev. Lett. 73, 2001–2004.

    Google Scholar 

  • Thompson, A. H., Katz, A. J., and Krohn, C. E.: 1987, The microgeometry and transport properties of sedimentary rock,Adv. Physics 36, 625–694.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferréol, B., Rothman, D.H. Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. Transp Porous Med 20, 3–20 (1995). https://doi.org/10.1007/BF00616923

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616923

Key words

Navigation