Journal of Applied Electrochemistry

, Volume 12, Issue 2, pp 205–211 | Cite as

An approximate economic evaluation of three-dimensional chemically modified electrodes

  • D. A. Cox
  • R. E. W. Jansson
Papers

Abstract

A mathematical analogue based on an array of transmission lines has been used to predict the performance of chemically modified three-dimensional electrodes under typical conditions. Even for reactions with low exchange currents, considerable non-uniformity of activation is predicted in the direction of current flow so that the electrode cannot be scaled-up indefinitely in this direction without penalty. At the same time the conversion per pass of the electrode is so low that it can be considered to be a constant concentration system. An approximate economic forecast based on the results of the model suggests production costs of the order of $500 to $5000 kg−1 for a product of molecular weight 200, depending on the thickness of the electrode and the maximum permissible overvoltage. Installed capital costs are estimated to total about $ 100000 for a capacity of 20 to 170 kg−1 y−1) also depending on the maximum permissible overvoltage.

Keywords

Molecular Weight Physical Chemistry Production Cost Economic Evaluation Transmission Line 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. F. Watkins, F. R. Behling, E. Kariv and L. L. Miller,JACS 97 (1975) 3549.Google Scholar
  2. [2]
    B. E. Firth, L. L. Miller, M. Mitani, T. E. Rogers, J. Lennox and R. W. Murray,JACS 98 (1976) 8271.Google Scholar
  3. [3]
    M. Fujihara, T. Matsue and T. Osa,Chem. Lett. (1976) 875.Google Scholar
  4. [4]
    T. Osa and M. Fujihara,Nature 264 (1976) 349.Google Scholar
  5. [5]
    P. R. Moses and R. W. Murray,JACS 98 (1976) 7435.Google Scholar
  6. [6]
    J. C. Lennox and R. W. Murray,JACS 100 (1978) 3710.Google Scholar
  7. [7]
    J. C. Lennox and R. W. Murray,J. Electroanal. Chem. 78 (1977) 395.Google Scholar
  8. [8]
    J. R. Lenhard, R. Rocklin, H. Abruna, K. Williams, K. Kuo, R. Nowak and R. W. Murray,JACS 100 (1978) 5213.Google Scholar
  9. [9]
    M. S. Wrighton, M. C. Palozzotto, A. B. Bocarsly, J. M. Botts, A. B. Fischer and L. Najo,JACS 100 (1978) 7264.Google Scholar
  10. [10]
    A. L. Aldred, C. Bradley and T. H. Newman,JACS 100 (1978) 5081.Google Scholar
  11. [11]
    J. R. Lenhard and R. W. Murray,JACS 100 (1978) 7870.Google Scholar
  12. [12]
    P. Daum and R. W. Murray,J. Electroanal. Chem. 103, (1979) 284.Google Scholar
  13. [13]
    N. Kobayashi, T. Matsue, M. Fujihara and T. Osa,J. Electroanal. Chem. 103 (1979) 427.Google Scholar
  14. [14]
    M. C. H. McKubre, D. D. Macdonald, P. Wentreck and S. S. Wing, ‘Electrochemical Removal of Dissolved Sulphide from Geothermal Fluids’, final report to the Environmental Protection Agency under contract 67-03-2778 (1981).Google Scholar
  15. [15]
    D. D. Macdonald and M. C. H. McKubre, ‘Impedance Measurements in Electrochemical Systems’, in ‘Modern Aspects of Electrochemistry’, Vol. 13, edited by J. O'M. Bockris (1981).Google Scholar
  16. [16]
    B. S. Daniel Bek,Zh. Fiz. Khim. 22 (1948) 697.Google Scholar
  17. [17]
    D. A. Cox, M. Phil. thesis, Southampton University (1981).Google Scholar
  18. [18]
    J. E. B. Randles,Disc. Farad. Soc. 1 (1947) 11.Google Scholar
  19. [19]
    J. S. Newman and W. Tiedemann, ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 11, Wiley, New York (1978) p. 353.Google Scholar
  20. [20]
    F. Goodridge and M. A. Hamilton,Electrochim. Acta 25 (1980) 481.Google Scholar
  21. [21]
    R. E. W. Jansson,Phil. Trans. Roy. Soc. A A302 (1981) 285–295.Google Scholar
  22. [22]
    R. E. W. Jansson,J. Appl. Electrochem. 12 (1982) 163.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • D. A. Cox
    • 1
  • R. E. W. Jansson
    • 1
  1. 1.Chemistry DepartmentThe UniversitySouthamptonUK

Personalised recommendations