Applied Physics A

, Volume 49, Issue 3, pp 305–311 | Cite as

Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties

  • T. Kanata
  • H. Takakura
  • Y. Hamakawa
Surfaces, Interfaces and Layer Structures


Silicon oxynitride films have been grown on silicon by current-controlled reactive sputtering. The content of oxygen in the films could be well controlled by regulating the sputtering current under the reactive gas of Ar+ N2 with an oxygen content of around 3%. The atomic ratio of oxygen to nitrogen in the silicon oxynitride film became larger with increasing sputtering current. It has been found that electron irradiation of the silicon substrate induces adsorption of oxygen and nitrogen. The degree of oxygen adsorption was about ten times larger than that of nitrogen. This phenomenon is a key mechanism in controlling the film composition. The adsorptive mechanism might be explained by the phenomenon of surface activation by the electron bombardment. Utilizing this technique, wettability by germanium of silicon oxynitride films could be controlled by varying their oxygen and nitrogen contents. A better wetting condition was obtained from films with large atomic ratio of nitrogen to oxygen in the silicon oxynitride film.


81.15.Cd 68.60.+q 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yonehara, Y. Nishigaki, H. Mizutani, S. Kondoh, K. Yamagata, L Ichikawa: Extended Abstracts of the 19th Conference on Solid State Devices and Materials, Tokyo, 1987, p. 191Google Scholar
  2. 2.
    A. Ogura, N. Aizaki, H. Terao: Appl. Phys. Lett.53, 22 (1988)Google Scholar
  3. 3.
    SiO2: L.E. Katz: InVLSI Technology, ed. by S.M. Sze (McGraw-Hill, New York 1983) p. 131Google Scholar
  4. 3a.
    SiNx: F.H.P.M. Habraken, A.E.T. Kuiper, A.V.O. Ostrom, Y. Tamminga, J.B. Theeten: J. Appl. Phys.53, 404 (1983)Google Scholar
  5. 4.
    SiO2: W.A. Pliskin: J. Vac. Sci. Technol.14, 1064 (1977)Google Scholar
  6. 4a.
    A.C. Adams: InVLSI Technology, ed. by S.M. Sze (McGraw-Hill, New York 1983) p. 106Google Scholar
  7. 4b.
    SiNx: A.K. Sinha, T.E. Smith: J. Appl. Phys.49, 2756 (1978)Google Scholar
  8. 4c.
    K. Hamano, Y. Numasawa, K. Yamazaki: Jpn. J. Appl. Phys.23, 1209 (1984)Google Scholar
  9. 4d.
    W. Kern, V.S. Ban: InThin Film Processes, ed. by J.L. Vossen, W. Kern (Academic, New York 1978) p. 298Google Scholar
  10. 5.
    L.I. Maissel: InHandbook of Thin Film Technology, ed. by L.I. Maissel, R. Glang (McGraw-Hill, New York 1970) Chap. 4Google Scholar
  11. 6.
    D.M. Brown, P.V. Grang, F.K. Heumann, H.R. Philippe, E.A. Taft: J. Electrochem. Soc.115, 311 (1968)Google Scholar
  12. 7.
    T.L. Chu, J.R. Szedon, C.H. Lee: J. Electrochem. Soc.115, 318 (1968)Google Scholar
  13. 8.
    M.J. Rand, J.F. Roberts: J. Electrochem. Soc.120, 446 (1973)Google Scholar
  14. 9.
    A.K. Gaind, E.W. Hearn: J. Electrochem. Soc.125, 139 (1978)Google Scholar
  15. 10.
    T. Kanata, H. Takakura, H. Mizuhara, Y. Hamakawa, T. Kariya: J. Appl. Phys.64, 3492 (1988)Google Scholar
  16. 11.
    A.K. Gaind, G.K. Ackermann, V.J. Lucarini, R.L. Bratter: J. Electrochem. Soc.124, 59 (1977)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • T. Kanata
    • 1
  • H. Takakura
    • 1
  • Y. Hamakawa
    • 1
  1. 1.Department of Electrical Engineering, Faculty of Engineering ScienceOsaka UniversityOsakaJapan

Personalised recommendations