Advertisement

Applied Physics A

, Volume 49, Issue 3, pp 233–237 | Cite as

Thermal annealing effects on grain boundary recombination activity in silicon

  • A. Barhdadi
  • H. Amzil
  • J. C. Muller
  • P. Siffert
Solids and Materials

Abstract

We have studied the influence of conventional and rapid thermal treatments at 850°C for 30 min and 10 s, respectively, on the recombination activity of theε9,ε13 (P-type) andε25 (N-type) grain boundaries in silicon. The analyses were made by scanning electron microscopy (SEM) working in the electron beam induced current mode (EBIC) and completed by minority carrier diffusion length measurements. The main result obtained from this study shows the importance of the rapid thermal process as a suitable thermal treatment for polycrystalline materials.

PACS

61.16D 61.70N 81.40E 61.50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Muller: Thesis, Louis Pasteur University, Strasbourg (1982)Google Scholar
  2. 2.
    W.O. Adekoya: Thesis, Paris VII Jussieu University, Paris (1987)Google Scholar
  3. 3.
    W.O. Adekoya, J.C. Muller, P. Siffert: Appl. Phys. Lett49, 21 (1986)Google Scholar
  4. 4.
    Groupe du laboratoire de Physique de la Matière (UA du CNRS no. 358) Institut des Sciences Appliquées de Lyon, FranceGoogle Scholar
  5. 5.
    R. Singh: J. Appl. Phys.63, 8 (1988)Google Scholar
  6. 6.
    L.L. Kazmerski: J. Vac. Sci. Technol.20, 3 (1982)Google Scholar
  7. 7.
    L.L. Kazmerski: Fifth E.C. Photovoltaic Solar Energy Conference, Athens, Greece, 17–21 October (1983) p. 40Google Scholar
  8. 8.
    J.B. Milstein, Y.S. Tsuo, R.W. Hardy, T. Surek: Fifteenth IEEE Photovoltaic Specialists Conference (1981) p. 1399Google Scholar
  9. 9.
    F. Battistella: Thesis, Paul Sabatier University, Toulouse (1985)Google Scholar
  10. 10.
    C. Dianteill: Thesis, Paul Sabatier University, Toulouse (1983)Google Scholar
  11. 11.
    G. Poulain: Thesis, Paris VII University (1985)Google Scholar
  12. 12.
    H.J. Leamy: J. Appl. Phys.53, 6 (1982)Google Scholar
  13. 13.
    A.M. Goodman: J. Appl. Phys.32, 2550 (1961) and U.S. Patent No. 4333051 (1982)Google Scholar
  14. 14.
    Annual Book of ASTM Standards (ASTM, Philadelphia 1982)Google Scholar
  15. 15.
    A. Rocher, C. Fontaine, C. Dianteill: Proceedings of the Royal Microscopical Society Conf, p. 289, Oxford (1981)Google Scholar
  16. 16.
    H. Strunk, B. Cunningham, D. Ast: InDefects in Semiconductors, ed. by Narayan and Tan (North-Holland, New York, Amsterdam, Oxford 1981) p. 297Google Scholar
  17. 17.
    Vu Thuong Quat, W. Eichhammer, P. Siffert: Appl. Phys. Lett.53, 1928 (1988)Google Scholar
  18. 18.
    Vu Thuong Quat, W. Eichhammer, P. Siffert: Appl. Phys. Lett.54, 187 (1989)Google Scholar
  19. 19.
    M.J. Berger, S.M. Seltzer: N. Ac. Sc. Nat. Res. Council Publ. No. 1133 (1964)Google Scholar
  20. 20.
    A. Barhdadi: To be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Barhdadi
    • 1
  • H. Amzil
    • 1
  • J. C. Muller
    • 2
  • P. Siffert
    • 2
  1. 1.Laboratoire de Physique des Semiconducteurs et de l'Energie Solaire (P.S.E.S.) E.N. Sup. de TakaddoumRabatMorocco
  2. 2.Laboratoire PHASE (UPR du CNRS no. 292)Centre de Recherches Nucléaires (IN2P3)Strasbourg CedexFrance

Personalised recommendations