Skip to main content
Log in

Morphological stability in epitaxy of semiconductors — application to optoelectronic monolithically integrated structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple selection rule for epitaxial growth techniques, which is based on morphological stability of the substrate surface is proposed. According to this rule a certain growth technique should be used for preparing a specific device structure of a three-dimensional monolithically integrated optical or electronic circuit. The formulae for morphological stability functions for LPE, MO, VPE, and MBE growth techniques are given. Calculations performed for the GaAs/Al x Ga1−x As material system by using the linear morphological stability theory of Mullins and Sekerka suggest that from the point of view of morphological stability the most suitable growth technique for fabrication of three-dimensional monolithically integrated optical and electronic device structures is the MBE technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Tien: Rev. Mod. Phys.49, 361 (1977)

    Google Scholar 

  2. M. Ilegems, H.C. Casey, S. Somekh, M.B. Panish: J. Crystal Growth31, 158 (1975)

    Google Scholar 

  3. H. Nagai, Y. Noguchi, T. Matsuoka, Y. Suzuki: Jpn. J. Appl. Phys.22, L291 (1983)

    Google Scholar 

  4. S. Mukai, C. Lindsey, J. Katz, E. Kapon, Z. Rav-Noy, S. Margalit, A. Yariv: Appl. Phys. Lett.45, 834 (1984)

    Google Scholar 

  5. H. Ishikawa, H. Imai, T. Tanahashi, K.I. Hori, K. Takahei: IEEE J. QE-18, 1704 (1982)

    Google Scholar 

  6. R.L. Moon: InCrystal Growth, 2nd ed., ed. by B.R. Pamplin (Pergamon, Oxford 1980) p. 421

    Google Scholar 

  7. H.M. Manasevit: J. Crystal Growth55, 1 (1981)

    Google Scholar 

  8. AY. Cho: Thin Solid Films100, 291 (1983)

    Google Scholar 

  9. K. Ploog, K. Graf:Molecular Beam Epitaxy of III-V Compounds (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  10. S.R. Coriell, R.L. Parker: J. Appl. Phys.36, 632 (1965)

    Google Scholar 

  11. P.G. Shewmon: Trans. Met. Soc. AIME233, 736 (1965)

    Google Scholar 

  12. S.R. Coriell, D.T.J. Hurle, R.F. Sekerka: J. Crystal Growth31, 1 (1976)

    Google Scholar 

  13. J.S. Langer: Rev. Mod. Phys.52, 1 (1980)

    Google Scholar 

  14. D.T.J. Hurle, E. Jakeman, A.A. Wheeler: J. Crystal Growth58, 163 (1982)

    Google Scholar 

  15. S.R. Coriell, R.F. Sekerka: J. Crystal Growth61, 499 (1983)

    Google Scholar 

  16. D.T.J. Hurle: J. Crystal Growth61, 463 (1983)

    Google Scholar 

  17. J.J. Favier, A. Rouzaud: J. Crystal Growth64, 367 (1983)

    Google Scholar 

  18. A.A. Wheeler: J. Crystal Growth67, 8 (1984)

    Google Scholar 

  19. P.W. Voorhees, S.R. Coriell, G.B. McFadden, R.F. Sekerka: J. Crystal Growth67, 425 (1984)

    Google Scholar 

  20. W.W. Mullins, R.F. Sekerka: J. Appl. Phys.34, 323 (1963)

    Google Scholar 

  21. W.W. Mullins, R.F. Sekerka: J. Appl. Phys.35, 444 (1964)

    Google Scholar 

  22. R.F. Sekerka: J. Crystal Growth3-4, 71 (1986)

    Google Scholar 

  23. R.F. Sekerka: InCrystal Growth — An Introduction, ed. by P. Hartman (North-Holland, Amsterdam 1973) p. 403

    Google Scholar 

  24. C.H.J. van den Brekel: Philips J. Res.33, 20 (1978)

    Google Scholar 

  25. C.H.J. van den Brekel, A.K. Jansen: J. Crystal Growth43, 364 (1978)

    Google Scholar 

  26. A.K. Jansen, C.H.V. van den Brekel: J. Crystal Growth43, 371 (1978)

    Google Scholar 

  27. C.H.J. van den Brekel, A.K. Jansen: J. Crystal Growth43, 488 (1978)

    Google Scholar 

  28. C.E. Smith:Applied Mathematics for Radio and Communication Engineers (Dover, New York 1961)

    Google Scholar 

  29. H.C. Casey Jr., M.B. Panish:Heterostructure Lasers (Academic, New York 1978)

    Google Scholar 

  30. D. Botez, J.C. Connolly: Appl. Phys. Lett.43, 1096 (1983)

    Google Scholar 

  31. D. Botez: IEEE J. QE-17, 2290 (1981)

    Google Scholar 

  32. A.A. Chernov: J. Crystal Growth52, 699 (1981)

    Google Scholar 

  33. J.S. Langer, H. Müller-Krumbhar: Phys. Rev. A.27, 499 (1983)

    Google Scholar 

  34. H.F. Lockwood, M. Ettenberg: J. Crystal Growth15, 81 (1972)

    Google Scholar 

  35. G.B. Stringfellow: Rep. Progr. Phys.45, 469 (1982)

    Google Scholar 

  36. Y. Takahashi, T. Soga, S. Sakal, M. Umeno, S. Hattori: Jap. J. Appl. Phys.22, 1357 (1983)

    Google Scholar 

  37. P.D. Dapkus: J, Crystal Growth68, 345 (1984)

    Google Scholar 

  38. T. Soga, Y. Takahashi, S. Sakai, M. Umeno: J. Crystal Growth68, 169 (1984)

    Google Scholar 

  39. K. Ploog: InCrystal-Growth, Properties and Applications, vol. 3, ed. by H.C. Freyhardt (Springer, Berlin, Heidelberg 1980) p. 75

    Google Scholar 

  40. M.A. Herman, T.G. Andersson:Electron Technology (Poland)18, no. 3/4 (1985)

  41. G.B. Stringfellow: J. Crystal Growth68, 111 (1984)

    Google Scholar 

  42. R. Heckingbottom, G.J. Davies, K.A. Prior: Surf. Sci.132, 375 (1983)

    Google Scholar 

  43. L.D. Smidt: InThe Physical Basis for Heterogeneous Catalysis, ed. by E. Drauglis, R.I. Jafee (Plenum, New York 1975) p. 451

    Google Scholar 

  44. M.A. Herman, O. Jylha, M. Pessa: Cryst. Res. Technol. (GDR)21, 841 and 969 (1986)

    Google Scholar 

  45. J.H. Neave, B.A. Houce, P.J. Dobson, N. Norton: Appl. Phys. A31, l (1983)

    Google Scholar 

  46. S.R. Coriell, R.L. Parker: J. Appl. Phys.37, 1548 (1966)

    Google Scholar 

  47. R. Ghez, M.B. Small: J. Crystal Growth52, 699 (1981)

    Google Scholar 

  48. P. Norris, J. Black, S. Zemon, G. Lambert: J. Crystal Growth68, 437 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Institute of Physics, Polish Academy of Sciences, PL-02-668 Warsaw, Poland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, M.A., Andersson, T.G. Morphological stability in epitaxy of semiconductors — application to optoelectronic monolithically integrated structures. Appl. Phys. A 41, 243–252 (1986). https://doi.org/10.1007/BF00616846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616846

PACS

Navigation