Applied Physics A

, Volume 41, Issue 3, pp 237–241 | Cite as

Silicon migration during MBE growth of doped (A1, Ga)As films

  • Luisa Gonzalez
  • J. B. Clegg
  • D. Hilton
  • J. P. Gowers
  • C. T. Foxon
  • B. A. Joyce
Surfaces, Interfaces, and Layer Structures


Silicon migration during MBE growth of (Al, Ga)As and (Al, Ga)As/GaAs or AlAs/GaAs superlattices has been studied by electrochemical C-V and secondary ion mass spectrometry (SIMS) concentration-depth profiling. It is found to be concentration dependent, with no preferential migration towards or away from the growth front. At high concentrations, superlattice disordering during growth is observed using photovoltage and transmission electron microscopy (TEM) techniques. On the basis of C-V, SIMS and TEM data we propose that silicon migration occurs as the result of a concentration-dependent diffusion process. This is substantiated by measurements of the two-dimensional electron-gas mobility in selectively doped heterojunctions as a function of growth temperature and silicon concentration.


68.55 66.30J 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Morkoç, T.J. Drummond, R. Fischer: J. Appl. Phys.53, 1030 (1982)Google Scholar
  2. 2.
    A.C. Gossard: Surf. Sci.152/153, 1153 (1985)Google Scholar
  3. 3.
    T.J. Drummond, H. Morkoç, A.Y. Cho: J. Appl. Phys.52, 1380 (1981)Google Scholar
  4. 4.
    H.L. Störmer, A. Pinczuk, A.C. Gossard, W. Wiegmann: Appl. Phys. Lett.38, 691 (1981)Google Scholar
  5. 5.
    C.T. Foxon, J.J. Harris, R.G. Wheeler, D.E. Lacklinson: J. Vac. Sci. Technol.34, 511 (1986)Google Scholar
  6. 6.
    G. Weimann, W. Schlapp: Appl. Phys. Lett.46, 411 (1985)Google Scholar
  7. 7.
    T.J. Drummond, J. Klem, D. Arnold, R. Fischer, R.E. Thorne, W.G. Lyons, H. Morkoc: Appl. Phys. Lett.42, 615 (1983)Google Scholar
  8. 8.
    K. Inoue, H. Sakaki: Jpn. J. Appl. Phys.23, L61 (1984)Google Scholar
  9. 9.
    K. Inoue, H. Sakaki, J. Yoshino: Appl. Phys. Lett.46, 973 (1985)Google Scholar
  10. 10.
    M. Heiblum: J. Vac. Sci. Tech. B3, 820 (1985)Google Scholar
  11. 11.
    A. Rockett, J. Klem, S.A. Barnett, J.E. Greene, H. Morkoç: J. Vac. Sci. Technol. (in the press)Google Scholar
  12. 12.
    M. Kawabe, N. Matsuura, N. Shimizu, F. Hasegawa, Y. Nannichi: Jpn. J. Appl. Phys.23, L623 (1984)Google Scholar
  13. 13.
    K. Meehan, N. Holonyak, J.M. Brown, M.A. Nixon, P. Gavrilovic: Appl. Phys. Lett.45, 549 (1984)Google Scholar
  14. 14.
    J.H. Neave, B.A. Joyce, P.J. Dobson, N. Norton: Appl. Phys. A31, 1 (1983)Google Scholar
  15. 15.
    J.H. Neave, P.J. Dobson, J.J. Harris, P. Dawson, B.A. Joyce: Appl. Phys. A32, 195 (1983)Google Scholar
  16. 16.
    J.J. Harris, C.T. Foxon: To be publishedGoogle Scholar
  17. 17.
    M.E. Greiner, F.J. Gibbons: Appl. Phys. Lett.44, 750 (1984)Google Scholar
  18. 18.
    J.A. Van Vechten: J. Appl. Phys.53, 7082 (1982)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Luisa Gonzalez
    • 1
  • J. B. Clegg
    • 1
  • D. Hilton
    • 1
  • J. P. Gowers
    • 1
  • C. T. Foxon
    • 1
  • B. A. Joyce
    • 1
  1. 1.Philips Research LaboratoriesRedhillUK

Personalised recommendations