Skip to main content
Log in

On the mechanism of liquid metal ion sources

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have developed a theoretical model of liquid metal ion source operation which consistently explains the shape and size of the ion emitting region, the mechanism of ion formation and properties of the ion beam. We find that field evaporation is the main current generating mechanism and that field evaporation and subsequent postionization produce the doubly and higher charged ions. Field ionization of thermally evaporated neutrals may make a significant, but not dominant, contribution to the current of singly charged ions. Our model is consistent with experimental results on energy spread, energy deficit and charge state ratios and we are able to explain the stability of the emitted ion current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.E. Krohn, G.R. Ringo: Appl. Phys. Lett.27, 479 (1975)

    Google Scholar 

  2. K.L. Aitken, G.L.R. Mair: J. Phys.13, 2165 (1980)

    Google Scholar 

  3. A. Dixon, C. Colliex, R. Ohana, P. Sudraud, J. Van de Walle: Phys. Rev. Lett.46, 865 (1981)

    Google Scholar 

  4. J. Van de Walle, P. Sudraud: Proc. 29th Intern. Field Emission Symposium, Goteborg, Sweden, ed. by H.-O. Andren and H. Norden (Almqvist and Wiksell, Stockholm 1982) p. 341

    Google Scholar 

  5. R. Gomer: Appl. Phys.19, 365 (1979)

    Google Scholar 

  6. P.D. Prewett, G.L.R. Mair, S.P. Thompson: J. Phys. D15, 1339 (1982)

    Google Scholar 

  7. T. Ishitani, H. Tamura: Appl. Phys.23, 193 (1980)

    Google Scholar 

  8. D.R. Kingham: Appl. Phys. A31, 161 (1983)

    Google Scholar 

  9. D.R. Kingham, L.W. Swanson: Appl. Phys. A34, 123 (1984)

    Google Scholar 

  10. D.R. Kingham, L.W. Swanson: Appl. Phys. A41, 157–169 (1986)

    Google Scholar 

  11. G.I. Taylor: Proc. R. Soc. (London) A280, 383 (1964)

    Google Scholar 

  12. H. Gaubi, P. Sudraud, M. Tence, J. Van de Walle: Proc. 29th Intern. Field Emission Symposium, Goteborg, Sweden, ed. by H.-O. Andren and H. Norden (Almqvist and Wiksell, Stockholm 1982) p. 357

    Google Scholar 

  13. P. Sudraud: Reported at 30th Intern. Field Emission Symposium, Philadelphia (1983), and at 31st Intern. Field Emission Symposium, Paris (1984)

  14. N.K. Kang, L.W. Swanson: Appl. Phys. A30, 95 (1983)

    Google Scholar 

  15. D.R. Kingham, L.W. Swanson: Vacuum34, 941 (1984)

    Google Scholar 

  16. D.R. Kingham, L.W. Swanson: J. Physique45, C9–139 (1984)

    Google Scholar 

  17. D.R. Kingham, A.E. Bell: J. Physique45, C9–139 (1984)

    Google Scholar 

  18. L.W. Swanson: Nucl. Instrum. Methods218, 347 (1983)

    Google Scholar 

  19. N. Sujatha, P.H. Cutler, E. Kazes, J.P. Rogers, N.M. Miskovsky: Appl. Phys. A32, 55 (1983)

    Google Scholar 

  20. D.R. Kingham, A.E. Bell: Appl. Phys. A36, 67 (1985)

    Google Scholar 

  21. M. Chung, P.H. Cutler, T.E. Feuchtwang, E. Kazes: (Reply to [20]) Appl. Phys. A36, 171 (1985)

    Google Scholar 

  22. R.G. Forbes: J. Physique45, C9–161 (1984)

    Google Scholar 

  23. S.P. Thompson, P.D. Prewett: J. Phys. D17, 2305 (1984)

    Google Scholar 

  24. A. Dixon, C. Colliex, P. Sudraud, J. Van de Walle: Surf. Sci.108, L424 (1981)

    Google Scholar 

  25. D.R. Kingham: Surf. Sci.116, 273 (1982)

    Google Scholar 

  26. R.G. Forbes, G.L.R. Mair: J. Phys. D15, L153 (1982)

    Google Scholar 

  27. T.T. Tsong: Surf. Sci.70, 211 (1978)

    Google Scholar 

  28. D. Broughton, R. Clampitt: Vacuum34, 275 (1984)

    Google Scholar 

  29. A.E. Bell, G.A. Schwind, L.W. Swanson: J. Appl. Phys.53, 4602 (1982)

    Google Scholar 

  30. A.R. Waugh: Proc. 28th Intern. Field Emission Symposium, Portland, Oregon (1981), ed. by L.W. Swanson, A.E. Bell

  31. A. Menand, D.R. Kingham: J. Phys. D17, 203 (1984)

    Google Scholar 

  32. T. Ishitani, K. Umemura, Y. Kawanami: J. Phys. D18, 163 (1985)

    Google Scholar 

  33. M.A. Gesley, D.L. Larson, L.W. Swanson, C.H. Hinrichs: Proc. SPIE471, 66 (1984)

    Google Scholar 

  34. M.A. Gesley, L.W. Swanson: J. Physique45, C9–167 (1984)

    Google Scholar 

  35. W. Knauer: Optik59, 335 (1981)

    Google Scholar 

  36. G.L.R. Mair, D.C. Grindrod, M.S. Mousa, R.V. Latham: J. Phys. D16, L209 (1983)

    Google Scholar 

  37. A.J. Jason: Phys. Rev.156, 266 (1967)

    Google Scholar 

  38. G.L. Kellog: Appl. Surf. Sci.11/12, 186 (1982)

    Google Scholar 

  39. R.J. Culbertson, G.H. Robertson, T. Sakurai: J. Vac. Sci. Technol.16, 1868 (1979)

    Google Scholar 

  40. P. Sudraud, C. Colliex, J. Van de Walle: J. Physique Lett.40, L207 (1979)

    Google Scholar 

  41. A.J. Dixon: J. Phys. D12, L77 (1979)

    Google Scholar 

  42. A.R. Waugh: J. Phys. D13, L203 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, L.W., Kingham, D.R. On the mechanism of liquid metal ion sources. Appl. Phys. A 41, 223–232 (1986). https://doi.org/10.1007/BF00616843

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616843

PACS

Navigation