Skip to main content
Log in

Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The paper reports on surface spectroscopy measurements of silicon single-crystal wafers which have been treated in order to obtain hydrophilic and hydrophobic surfaces, respectively. The wafers are characterized in terms of the oxidation behaviour in air (“native oxides”), their surface chemical composition and the chemical bonds involved. It is shown that the oxide on hydrophilic wafers mainly grows in the cleaning agent and consists of hydrated SiO2 through all stages of the growth. On a hydrophobic surface, however, the oxidation begins with the formation of a lower oxidation state which turns into SiO2 on storage in air. The thickness of the oxides on both surface types reaches 1.4–1.5 nm. Both the chemical shift in photoelectron spectroscopy and the frequency of the asymmetric Si-O-Si vibration in electron energy loss spectroscopy support the assumption of a reduced bonding angle of the oxygen bridge.

Hydrophilicity is caused by singular and associated OH groups on the surface. Singular groups could be detected up to 700 K. There are hints that OH groups stabilize the oxide during heating. The hydrophobic state is mainly characterized by Si-H and Si-CH x groups on the surface, whereas Si-F exists only in minor quantities. Si-H groups were stable up to approximately 900 K in UHV. Si-CH x dehydrogenizes at temperatures between 500 and 700 K leaving SiC on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kern, D.A. Puotinen: RCA Rev.31, 187 (1970)

    Google Scholar 

  2. B.F. Phillips: J. Vac. Sci. Technol. A1, 646 (1983)

    Google Scholar 

  3. D.E. Aspnes, A.A. Studna: Appl. Phys. Lett.39, 316

  4. F.J. Grunthaner, J. Maserjian: IEEE Trans. NS-24, 2108 (1977)

    Google Scholar 

  5. F.M. Schwettmann: Electrochem. Soc. Extended Abstr.78–1, 688 (1978)

    Google Scholar 

  6. R.C. Henderson: J. Electrochem. Soc.119, 772 (1972)

    Google Scholar 

  7. J. Finster, D. Schulze: Phys. Stat. Solidi (a)68, 505 (1981)

    Google Scholar 

  8. S.I. Raider, R. Flitsch, M.J. Palmer: J. Electrochem. Soc.122, 413 (1975)

    Google Scholar 

  9. G. Mende, J. Finster, D. Flamm, D. Schulze: Surf. Sci.128, 169 (1983)

    Google Scholar 

  10. J. H. Matlock: Electrochem. Soc. Extended Abstr.83–1, 413 (1983)

    Google Scholar 

  11. H.J. Stein: Appl. Phys. Lett.32, 379 (1978)

    Google Scholar 

  12. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale: Surf. Interf. Anal.3, 211 (1981)

    Google Scholar 

  13. M.F. Ebel, G. Zuba, H. Ebel, J. Wernisch, A. Jablonski: Spectrochim. Acta39 B, 637 (1984)

    Google Scholar 

  14. R. Flitsch, S.I. Raider: J. Vac. Sci. Technol.12, 305 (1975)

    Google Scholar 

  15. J.H. Mazur, R. Gronsky, J. Washburn: Lawrence Berkeley Laboratory Report 16272 (1983)

  16. F.J. Grunthaner, P.J. Grunthaner, R.P. Vasquez, B.F. Lewis, J. Maserjian: J. Vac. Sci. Technol.16, 1443 (1979)

    Google Scholar 

  17. G. Hollinger, F.J. Himpsel: Appl. Phys. Lett.44, 93 (1984)

    Google Scholar 

  18. P.O. Hahn, M. Henzler: J. Appl. Phys.52, 4122 (1981)

    Google Scholar 

  19. R. K. Iler:The Surface Chemistry of Silica (Wiley, New York 1900) p. 657

    Google Scholar 

  20. R.C. Gray, J.C. Carver, D.M. Hercules: J. Electr. Spectrosc. Rel. Phen.8, 343 (1976)

    Google Scholar 

  21. P.O. Hahn: Private communication

  22. H. Ibach: Private communication

  23. H. Ibach, H.D. Bruchmann, H. Wagner: Appl. Phys. A29, 113 (1982)

    Google Scholar 

  24. J.A. Schäfer, D. Frankel, F. Stucki, W. Göpel, G.J. Lapeyre: Surf. Sci.139, L 209 (1984)

    Google Scholar 

  25. W. Hertl, M.L. Hair: J. Phys. Chem.72, 4676 (1968)

    Google Scholar 

  26. H. Ibach, H. Wagner, D. Bruchmann: Solid State Commun.42, 457 (1982)

    Google Scholar 

  27. H. Hanbücken, H. Neddermayer, J.R. Venables: Surf. Sci.137, L 92 (1984)

    Google Scholar 

  28. J.A.G. Taylor, J.A. Hockey, B.A. Pethica: Proc. Brit. Ceram. Soc.5, 133 (1965)

    Google Scholar 

  29. H. Beyer: Private communication

  30. F.L. Galeener: Phys. Rev. B19, 4292 (1979)

    Google Scholar 

  31. P.H. Gaskell, D.W. Johnson: J. Non-Cryst. Solids20, 171 (1976)

    Google Scholar 

  32. W.Y. Ching: Phys. Rev. B26, 6622 (1982)

    Google Scholar 

  33. G. Hollinger: Appl. Surf. Sci.8, 318 (1981)

    Google Scholar 

  34. H. Ubara, T. Imura, A. Hiraki: Solid State Commun.50, 673 (1984)

    Google Scholar 

  35. E. Mendel: Solid State Technol.10, 27 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundner, M., Jacob, H. Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy. Appl. Phys. A 39, 73–82 (1986). https://doi.org/10.1007/BF00616822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616822

PACS

Navigation