Transport in Porous Media

, Volume 10, Issue 3, pp 257–270 | Cite as

A note on reservoir simulation for heterogeneous porous media

  • Tore Gimse
  • Nils Henrik Risebro


We present a front-tracking method for solving two-phase reservoir simulation problems arising in reservoirs with varying geological properties. The method preserves exactly the characteristic features of saturation fronts crossing media discontinuities. Two test examples are presented.

Key words

Reservoir simulation heterogeneities front tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aziz, K. and Settari, A.,Petroleum Reservoir Simulation, Elsevier, London, New York, 1979.Google Scholar
  2. 2.
    Bratvedt, F., Bratvedt, K., Buchholz, C., Holden, H., Holden, L. and Risebro, N. H., A new front tracking method for reservoir simulation,SPE J. Reservoir Simulation (Feb. 1992), 107–116.Google Scholar
  3. 3.
    Bratvedt, F., Bratvedt, K., Buchholz, C., Gimse, T., Holden, H., Holden, L. and Risebro, N. H., Front tracking for reservoir simulation,Proc. Conference Dedicated to the Memory of Raphael HØegh-Krohn, edited by H. Holden and T. LindstrØm, Cambridge Univ. Press, 1992, pp. 409–427.Google Scholar
  4. 4.
    Chavent, G., Cohen, G. and Jaffre, J., A finite element simulator for incompressible two phase flow,Transport in Porous Media 2 (1987), 465–478.Google Scholar
  5. 5.
    Crandall, M. and Majda, A., The method of fractional steps for conservation laws,Numer. Math. 34 (1980), 285–314.Google Scholar
  6. 6.
    Dafermos, C. M., Polygonal approximation of solutions of the initial value problem for a conservation law,J. Math. Anal. Appl. 38 (1972), 33–41.Google Scholar
  7. 7.
    Gimse, T., A numerical method for a system of equations modelling one-dimensional three-phase flow in a porous medium,Notes on Num. Fluid Mech. 24 (1989), 159–168.Google Scholar
  8. 8.
    Gimse, T. and Risebro, N. H., Riemann problems with discontinuous flux functions,Proc. Third Internat. Conf. Hyperbolic Problems, Uppsala, 1990, pp. 488–502.Google Scholar
  9. 9.
    Gimse, T. and Risebro, N. H., Solution of the Cauchy problem for a conservation law with a discontinuous flux function,SIAM J. Math. Anal. 23 (1992), 635–648.Google Scholar
  10. 10.
    Glimm, J., Lindquist, B., McBryan, O. A., Plohr, B. and Yaniv, S., Front tracking for petroleum reservoir simulation, SPE preprint 12238 (1981), pp. 41–49.Google Scholar
  11. 11.
    Holden, H., Holden, L. and HØegh-Krohn, R., A numerical method for first order nonlinear scalar conservation laws in one-dimension,Comput. Math. Appl. 15 (1988), 595–602.Google Scholar
  12. 12.
    Holden, H. and Risebro, N. H., A fractional steps method for scalar conservation laws without the CFL-condition,Math. Comput. (to appear).Google Scholar
  13. 13.
    Holden, L. and HØegh-Krohn, R., A class ofN nonlinear hyperbolic conservation laws,J. Differential Equations 84 (1990), 73–99.Google Scholar
  14. 14.
    KruŽkov, N., Quasi-linear equations of the first order,Mat. Sb. 2 (1970), 217–243.Google Scholar
  15. 15.
    Peaceman, D. W.,Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Tore Gimse
    • 1
  • Nils Henrik Risebro
    • 1
  1. 1.Institute of MathematicsUniversity of OsloNorway

Personalised recommendations