Mechanics of Composite Materials

, Volume 31, Issue 1, pp 80–90 | Cite as

Some aspects of polymer melts rheology

  • L. A. Faitelson
Article

Conclusions

This paper is concerned with investigations in which there has been revealed most distinctly a failure of an initial equilibrium structure and a formation of a new one induced by a shear flow.
  1. 1.

    A steady flow of monodisperse with respect to the molecular weight polymer melts is contained within the region of positive values of the second derivative of storage energy with respect to the shear rate. When the sign of this derivative is reversed the melt is affected by a uniform stress field, and, at a Poiseuille flow, an elastic turbulence phenomenon arises.

     
  2. 2.

    At some shear stress value in monodisperse fibre suspensions, there occurs a failure in the fibre structure, and a new high-organized clusterial one is formed. The process is accompanied by an abrupt decrease of the first normal stress difference, and even by a reverse of its sign in a local region of the shear rate.

     
  3. 3.

    One of the effective methods to investigate the nature of flow induced supramolecular structure of a polymer with flexible molecules and the textures of liquid-crystalline polymers arising at a shear flow, is the superposition of steady and oscillatory shear flows.

     

Keywords

Shear Rate Shear Flow Steady Flow Supramolecular Structure Stress Difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Rouse, “A theory of the linear viscoelastic properties of dilute solutions of coiling polymers”, J. Chem. Phys.,21, No. 7, 1272–1280 (1953).Google Scholar
  2. 2.
    B. H. Zimm, “Dynamics of polymer molecules in dilute solution”, J. Chem. Phys.,24, No. 2, 369–378 (1956).Google Scholar
  3. 3.
    B. H. Zimm, G. M. Roe, and L. F. Epstein, “Solutions of a characteristic value problem from the theory of chain molecules”, J. Chem. Phys.,24, No. 2, 279–280 (1956).Google Scholar
  4. 4.
    J. D. Ferry, R. F. Landel, and M. L. Williams, “Extensions of the Rouse theory of viscoelastic properties to undiluted linear polymers”, J. Appl. Phys.,26, No. 4, 359–362 (1955).Google Scholar
  5. 5.
    M. Doi and S. F. Edwards, “Dynamics of concentrated polymer systems. Pts I-IV”, J. Chem. Soc. Faraday Trans. II,74, 1789–1979 (1978),75, 38–54 (1979).Google Scholar
  6. 6.
    R. R. Rahalkar, “Correlation between the crossover modulus and the molecular weight distribution using the Doi-Edwards theory of reptation and the Rouse theory”, Rheologica Acta.,28, No. 2, 166–175 (1989).Google Scholar
  7. 7.
    G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], Mir, Moscow (1980), p. 467.Google Scholar
  8. 8.
    W. P. Cox and E. H. Merz, “Correlation of dynamic and steady flow viscosities”, J. Polymer Sci.,26, No. 18, 619–622 (1958).Google Scholar
  9. 9.
    E. E. Jakobson and L. A. Faitelson, “Stress-strain state of high-molecular-weight fluids under steady shear flow and accumulated energy”, Mech. Composite Mater.,21, No. 2, 231–238 (1985).Google Scholar
  10. 10.
    J. P. Berry and J. Batchelor, “Determination of p22–p33 for depolymerized natural rubber and bulk polyisobutilen”, in: Polymer Systems, R. E. Wetton and R. W. Whorlow (eds.), Macmillan, London-Melbourne-Toronto, (1968), pp. 189–197.Google Scholar
  11. 11.
    J. Meissner, “Die Kunststoff-Schmelze als elastiche Flüssigkeit, 2. Rheologische Verhalten im nichtlinearen Beanspruchungsbereich”, Kunststoffe,57, No. 9, 702–710 (1967).Google Scholar
  12. 12.
    G. H. West, “The application of molecular theories to the behavior of bulk polymers in steady shear and recovery”, Rheologica Acta,9, No. 4, 554–561 (1970).Google Scholar
  13. 13.
    G. V. Vinogradov, “Fluid polymeric systems and their filling. 1. High-molecular linear polymers of narrow molecular mass distribution”, Polymer Mech.,13, No. 6, 887–897 (1977).Google Scholar
  14. 14.
    W. Philippoff, “Elasticity in steady flow”, Trans. Soc. Rheol.,10, No. 1, 1–23 (1966).Google Scholar
  15. 15.
    K. Weissenberg, “The testing of materials by means of the rheogoniometer”, Sangamo Controls Ltd. (1964).Google Scholar
  16. 16.
    B. Bernstein, E. A. Kearsley, and L. J. Zapas, “A study of stress relaxation with finite strain”, J. Res. Natl. Bur. Stand. A.,69, 541 (1965).Google Scholar
  17. 17.
    L. A. Faitelson, “Fluid polymeric systems and their fillings. 2. Polymers characterized by their molecular mass distribution”, Polymer Mechanics,14, No. 1, 95–104 (1978).Google Scholar
  18. 18.
    N. M. Smirnova, I. V. Korepova, and J. Ya. Podolsky, “The pressure dependence of zero shear viscosity of elastomers”, Equipment and technology for processing polymers and, rubber. Issue 1. Yaroslavl: Yaroslavl Polytechnic Institute [in Russian], 96–98 (1978).Google Scholar
  19. 19.
    L. A. Faitelson and I. P. Briedis, “Critical deformation of molten polymers in rotary rheometers with an active cone-plate pair”, Polymer Mech.,12, No. 4, 644–648 (1976).Google Scholar
  20. 20.
    L. A. Faitelson and E. E. Jakobson, “Components of the complex modulus during the periodic shear flow of a viscoelastic fluid”, Mech. Composite Mater.,17, No. 2, 193–201 (1981).Google Scholar
  21. 21.
    Wo. Ostwald, “Über die Geschwindigkeits funktion der Viskosität disperser Systeme”, Kolloid-Zeitschrift,36, S. 99 (1925).Google Scholar
  22. 22.
    Wo. Ostwald and R. Auerbach, “Über die Viskosität kolloider Lösungen im Struktur-, Laminar- und Turbulenzgebiet”, Kolloid-Zeitschrift,38, 261–280 (1926).Google Scholar
  23. 23.
    H. Fromm, “Laminare Strömung Newtonscher und Maxwellscher Flüssigkeiten”, Zeitschrift für Angewandeter Mathematik und Mechanik, 25/27, No. 1, 146–150 (1947).Google Scholar
  24. 24.
    M. Mooney, “Theory of non-Newtonian rheology of raw rubbers consisting of supermolecular rheological units”, J. Appl. Phys.,27, No. 2, 691–6694 (1956).Google Scholar
  25. 25.
    W. F. Busse, “Mechanical structures in polymer melts”, J. Polymer Sci., A2,5, 1249–1281 (1967).Google Scholar
  26. 26.
    A. I. Leonov and G. V. Vinogradov, “Polymer rheology. The theory of thyxotropy”, Dokl. Akad. Nauk SSSR,155, No. 2, 406–409 (1964).Google Scholar
  27. 27.
    G. Ver Strate and W. Philippoff, “Phase separation in flowing solutions”, J. Polymer Sci., Polymer Letter Ed.,12, No. 5, 267–275 (91974).Google Scholar
  28. 28.
    W. M. Kulicke and R. S. Porter, “Irregularities in steady flow for non-Newtonian fluids between cone and plate”, J. Appl. Polymer Sci.,23, 953–965 (1979).Google Scholar
  29. 29.
    A. B. Metzner, Y. Cohen, and C. Rangel-Nafaile, “Inhomogeneous flow of non-Newtonian fluids: generation of spatial concentration gradients”, J. Non-Newt. Fluids Mech.,5, 449–462 (1979).Google Scholar
  30. 30.
    H. P. Schreiber and S. H. Storey, “Molecular fractination in capillary flow of polymer fluids”, J. Polymer Sci.,B3. No. 9, 723–727 (1965).Google Scholar
  31. 31.
    A. Galeski, J. Ploszajski, L. A. Faitelson, and M. Kryszewski, “Shear induced vortices in high molecular weight polyethylene oxide melt”, Polymer Bull.,7, 283–288 (1982).Google Scholar
  32. 32.
    T. De'Neve and P. Navard, “Relationship between optical textures and rheological behavior of a thermotropic polymer”, in: Theoretical and Applied Rheology, P. Moldenaers and R. Keunings (eds.), Elsevier Publishers, Amsterdam-London-NY (1992), pp. 522–523.Google Scholar
  33. 33.
    G. Akay and F. M. Leslie, “Microstructure orientation in liquid crystalline and glass fibre reinforced polymer melts”, in: Advances in Rheology, Vol. 3, B. Mena, A. Garcia-Rejon, and C. Rangel-Nafaile (eds.), Universidad Nacional autonoma de Mexico, Mexico (1984), pp. 496–502.Google Scholar
  34. 34.
    L. A. Faitelson and V. P. Kovtun, “Experimental investigation of monodispers fibre suspension in simple shear flow”, Polymer Mechanics [in Russian],11, No. 2, 326–334 (1975).Google Scholar
  35. 35.
    L. A. Faitelson and V. P. Kovtun, “Experimental investigation of suspensions of monodisperse fibres in simple shear flow. II”, Equipment and technology for processing of polymers and rubber. Issue 1. Yaroslavl: Yaroslavl Polytechnic Institute [in Russian], 61–62 (1977).Google Scholar
  36. 36.
    T. Kataoka, M. Kurata, and M. Tamure, “Normal stress effect in polymer solutions”, J. Appl. Phys.,30, No. 11, 1705–1712 (1959).Google Scholar
  37. 37.
    N. Adams and A. S. Lodge, “Rheological properties of concentrated polymer solutions. II. A cone-plate and parallel-plate preasure distribution apparatus for determining normal stress differences in steady shear flow”, Phil. Trans. Roy. Soc.,A256, 149–184 (1964).Google Scholar
  38. 38.
    M. Doi and S. F. Edwards, “Dynamics of rod-like macromolecules in concentrated solutions. Pt. 2”,J. Chem. Soc., Faradey Trans. II,74, No. 2, 918–932 (1978).Google Scholar
  39. 39.
    M. Doi and N. Y. Kazuu, “Non-linear elasticity of rod-like macromolecules in condensed state”, J. Polymer Sci., Polymer Phys. Ed.,18, No. 3, 409–419 (91980).Google Scholar
  40. 40.
    V. P. Kovtun and L. A. Faitelson, “Non-Newtonian viscosity of fiber suspensions”, Mech. Composite Mater.,26, No. 4, 535–537 (1990).Google Scholar
  41. 41.
    C. E. Chaffey and R. S. Porter, “On the origin of negative normal stresses in sheared or lyotropic liquid crystals”, J. Rheol.,29, Issue 3, 281–305 (1985).Google Scholar
  42. 42.
    A. D. Gotsis and D. G. Baird, “Primari normal stress difference for two liquid crystalline copolyesters”, Rheologica Acta,25, No. 3, 275–286 (1986).Google Scholar
  43. 43.
    L. A. Faitelson and M. G. Tsiprin, “Possible flow mechanisms of polymer solutions and melts”, Polymer Mech.,7, No. 3, 485–487 (1971).Google Scholar
  44. 44.
    E. E. Jakobson and L. A. Faitelson, “Viscoelasticity of liquid-crystal polymers in superposition of period and steady-state shear flow”, Mech. Composite Mater.,29, No. 5, 520–526 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. A. Faitelson
    • 1
  1. 1.Institute of Polymer MechanicsLatvian Academy of SciencesRigaLatvia

Personalised recommendations