Applied Physics A

, Volume 44, Issue 3, pp 239–244 | Cite as

Surface polarization effect on positron backdiffusion from dielectrics

  • A. Dupasquier
  • L. Quartapelle
Solids and Materials


The reduction of the thermal positron backdiffusion probability from a dielectric, due to the electrostatic polarization of the surface, has been calculated in the framework of an isothermal diffusion model. Our results show that this reduction can pass from levels of only a few percent (e.g., Si and Ge at room temperature) to almost complete suppression for substances with short positron diffusion length and at low temperatures. It is also shown that the surface polarization effect can be ignored in measurements of the positron diffusion constant with beam techniques if the low-energy part of the backdiffusion probability vs. beam energy curve is not included in the analysis.


71.60 78.70B 72.90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.P. Mills, Jr.: InPositron Solid-State Physics, ed. by W. Brandt, A. Dupasquier (North-Holland, Amsterdam 1983) p. 432Google Scholar
  2. 2.
    A. Dupasquier, A. Zecca: Riv. Nuovo Cimento8, 12 (1985)Google Scholar
  3. 3.
    W. Brandt, R. Ripon, R. Paulin: Phys. Rev. Lett.31, 1214 (1973); also Appl. Phys.4, 343 (1974)Google Scholar
  4. 4.
    K. Saarinen, P. Hautojärvi, H. Huomo, P. Huttunen, A. Vehanen: European Meeting on Positron Studies of Defects (Wernigerode, GDR, March 1987) (unpublished)Google Scholar
  5. 5.
    A. Many, Y. Goldstein, N.B. Grover: Semiconductor Surfaces (North-Holland, Amsterdam 1971)Google Scholar
  6. 6.
    A.M. Stoneham: Intel. Conf. on Defects in Ionic Crystals (El Escorial, Spain, 1986) Proc. (to be published)Google Scholar
  7. 7.
    A.M. Stoneham, P.W. Tusker: J. Phys. C18, L 543 (1985)Google Scholar
  8. 8.
    W.R. Smythe:Static and Dynamic Electricity, 2nd ed. (McGraw-Hill, New York 1950) p. 115Google Scholar
  9. 9.
    S. Valkealahti, K.M. Nieminen: Appl. Phys. A32, 95 (1983)Google Scholar
  10. 10.
    H.H. Jorch, K.G. Lynn, T. McMullen: Phys. Rev. B30, 96 (1984)Google Scholar
  11. 11.
    B. Nielsen, K.G. Lynn, A. Vehanen, P.J. Schultz: InPositron Annihilation, ed. by P.C. Jain, R.M. Singru, K.P. Gopinathan (World Scientific, Singapore 1985) p. 717Google Scholar
  12. 12.
    A.P. Mills, Jr., W.S. Crane: Phys. Rev. Lett.53, 2165 (1984)Google Scholar
  13. 13.
    M. Eldrup, A. Vehanen, P.S. Schultz, K.G. Lynn: Phys. Rev. Lett.51, 2007 (1983); also: Phys. Rev. B32, 7048 (1985)Google Scholar
  14. 14.
    P. Sferlazzo, S. Berko, K.F. Canter: Phys. Rev. B32, 6067 (1985)Google Scholar
  15. 15.
    H.E. Hansen, U. Ingerslev-Jensen: J. Phys. D16, 1353 (1983)Google Scholar
  16. 16.
    A.P. Mills, Jr., R. Wilson: Phys. Rev. A26, 490 (1982)Google Scholar
  17. 17.
    E. Gast, Th. Gast: InLandolt-Börnstein Zahlenwerte und Funktionen,II/6, ed. by K.H. Hellwege, A.M. Hellwege (Springer, Berlin, Göttingen 1959) p. 451Google Scholar
  18. 18.
    J. Appel:Solid State Phys.21, 193 (Academic, New York 1968)Google Scholar
  19. 19.
    J. de Launay:Solid State Phys.2, (Academic, New York 1956)Google Scholar
  20. 20.
    G. Dahlquist, Å. Björck:Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ 1974)Google Scholar
  21. 21.
    H.H. Jorch, K.G. Lynn, I.K. MacKenzie: Phys. Rev. Lett.47, 363 (1981)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. Dupasquier
    • 1
  • L. Quartapelle
    • 1
  1. 1.Istituto di Fisica del PolitecnicoMilanoItaly

Personalised recommendations