Skip to main content
Log in

Electrochemical concentrating and purifying from dilute copper solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effectiveness of a new process for recovering copper ions from dilute solutions has been tested. Porous, fixed, flow-through graphite electrodes are used in conjunction with a membrane which separates the two feed streams. The concept is demonstrated using a dilute feed of 800μ ml{−1} copper ions which is reduced to less than 1μ ml{−1}, and a concentrated stream of 0.4 M copper which is concentrated to 0.7M. The results show the concept is technically feasible and that it is competitive with existing technology for copper recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

area per unit volume, cm−1

c o :

copper concentration of feed, mol cm−3

c b :

averaged, bulk copper concentration within porous cathode, mol cm−3

c Lb :

copper concentration in cathode effluent, mol cm−3

E 0 :

potential difference between reversible hydrogen reference electrode and reversible copper reference electrode in solution aty equal zero, V.

F :

Faraday's constant, 96487 coul/equiv

i 2 :

superficial or overall electrical current density in catholyte solution, A cm−2

i t :

total, overall current density to cathode, A cm−2

j :

transfer current density, A cm−2

k m :

mass transfer coefficient, cm s−1

L :

thickness of the cathode, cm

M:

molecular weight, g gmol−1

n :

number of electrons transferred in electrode reaction, 2

q e :

charge passed per unit volume of electrode, coul cm−3

Re :

Reynolds number, dvρμ −1

Sc :

Schmidt numberv D−1, dimensionless

t :

time to plug cathode with copper,s

v :

superficial or approach velocity of catholyte solution, cm s−1

VDP:

potential of saturated calomel reference electrode in catholyte effluent relative to the cathode, V

VA:

potential of anode relative to cathode, V

y :

distance from entrance of cathode toward cathode backing plate, cm

α :

ak m/v, cm−1

β :

nFv 2 c o /ak m K, V

ε :

void fraction, dimensionless

k :

effective or superficial electrical conductivity of catholyte, mho cm−1

μ :

viscosity of feed solution, g cm−1 s−1

v :

kinematic viscosity, cm2 s−1

ρ :

density, g cm−3

φ 1 :

potential in the matrix, V

φ 2, b :

potential plus a constant of a reversible hydrogen electrode in the solution, V

φ 2s :

potential of a reversible copper electrode adjacent to pore wall, V

δφ ohmic :

potential difference in bulk solution due to current flow, V

ψ :

particle shape factor, 0.86 for flakes, dimensionless

o:

front of the electrode

1:

solid phase

2:

solution phase

b :

bulk solution

s :

solid-solution interface

References

  1. Deco Trefoil, ‘Copper-hydrometallurgy’, vol. 33, no. 4, Bulletin No. G3-B146 (1969) 9.

  2. D. W. Agers, J. E. House, R. R. Swanson and J. L. Drobnick, ‘Copper Recovery from Acid Solutions using Liquid Ion Exchange’, General Mills Chemicals, Inc., Minneapolis, Company Report, (not dated).

  3. D. W. Agers, and E. R. DeMent, ‘LIXR64 As an Extractant for Copper’, Presented at Fall Meeting of the Society for Mining Engineers of AIME, Las Vegas, Nevada, Sept 6–8, 1967, abstract inMm. Eng. 19 (1967) 25.

  4. G. A. Carlson, U.S. 3, 459, 646; 5 Aug. 1969.

  5. Idem, U.S. 3,647,653; 7 March 1972.

  6. Idem, U.S. 3,650,925; 21 March 1972.

  7. F. A. Posey, ORNL-IM-4112, March, 1973.

  8. D. N. Bennion and J. Newman,J. Appl. Electrochem. 2 (1972) 113.

    Google Scholar 

  9. R. Alkire and P. K. Ng,J. Electrochem. Soc. 121 (1974) 95.

    Google Scholar 

  10. A. K. P. Chu, M. Fleischman and G. J. Hills,J. Appl. Electrochem. 4 (1974) 323.

    Google Scholar 

  11. A. K. P. Chu and G. J. Hills,ibid 4 (1974) 331.

    Google Scholar 

  12. Gracon, ‘Flow Through Porous Electrodes’, PhD dissertation, University of Illinois, Urbana (1975).

    Google Scholar 

  13. G. B. Adams, R. P. Hollandsworth and D. N. Bennion,J. Electrochem. Soc. 122 (1975) 1043.

    Google Scholar 

  14. R. S. Wenger, ‘Electrochemical Concentrating and Purifying from Dilute Copper Solutions’, M.S. Thesis, University of California, Los Angeles, Feb. 1974.

    Google Scholar 

  15. R. B. Bird, W. E. Steward and E. N. Lightfoot, ‘Transport Phenomena’, John Wiley & Sons, New York (1960) pp. 411 and 679.

    Google Scholar 

  16. A. J. Karabelas, T. H. Wegner and T. J. Hanratty,Chem. Eng. Sci.,26 (1971) 1581.

    Google Scholar 

  17. J. A. Mandelbaum, and U. Böhm,ibid,28 (1973) 569.

    Google Scholar 

  18. J. E. Williamson, K. E. Bazaire and C. J. GeankoplisInd. Eng. Chem.,2 (1963) 126.

    Google Scholar 

  19. E. I. Wilson, and C. J. Geankoplis,ibid 5 (1966) 9.

    Google Scholar 

  20. L. K. McCune, and R. H. Wilhelm,ibid 41 (1949) 1124.

    Google Scholar 

  21. M.S. Peters, and Klaus D. Timmerhaus, ‘Plant Design and Economics for Chemical Engineers’, 2nd edn., McGraw-Hill (1968) pp. 104 and 131.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenger, R.S., Bennion, D.N. Electrochemical concentrating and purifying from dilute copper solutions. J Appl Electrochem 6, 385–396 (1976). https://doi.org/10.1007/BF00616537

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616537

Keywords

Navigation