Mechanics of Composite Materials

, Volume 31, Issue 2, pp 119–125 | Cite as

Effect of temperature on the creep of a thermotropic liquid crystalline polymer

  • R. D. Maksimov
Article

Keywords

Polymer Crystalline Polymer Liquid Crystalline Polymer Thermotropic Liquid Crystalline Polymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polymeric Liquid Crystals, A. Blumstein (ed.), Plenum Press, New York (1985).Google Scholar
  2. 2.
    N. A. Platé (ed.), Liquid Crystalline Polymers [in Russian], Khimiya, Moscow (1988).Google Scholar
  3. 3.
    Liquid Crystal Polymers: From Structures to Applications, A. A. Collyer (ed.), Elsevier Sci. Publ., London (1992).Google Scholar
  4. 4.
    W. J. Jackson and H. F. Kuhfuss, “Liquid crystal polymers. I. Preparation and properties of p-hydroxybenzoic acid copolyesters,” J. Polymer Sci., Polymer Chem. Ed.,14, 2043–2058 (1976).Google Scholar
  5. 5.
    W. Brostow, “Properties of polymer liquid crystals: choosing molecular structures and blending,” Polymer,31, 979–995 (1990).Google Scholar
  6. 6.
    V. P. Shibaev and S. V. Belyaev, “Prospects for application of functional liquid-crystalline polymers and composites,” Vysokomolek. Soedin., Ser. A,32, No. 12, 2266–2310 (1990).Google Scholar
  7. 7.
    É. É. Yakobson, L. A. Faitel'son, and V. G. Kulichikhin, “Temperature-frequency behavior of the viscoelasticity of thermotropic polymers in the liquid crystalline state,” Mekhanika Kompozitnykh Materialov, No. 3, 514–520 (1991).Google Scholar
  8. 8.
    W. Brostow and M. Hess, “Polymer liquid crystals and their blends: a hierarchy of structures,” Materials Res. Soc. Symp.,255, 57–73 (1992).Google Scholar
  9. 9.
    B. Zülle, A. Demarmels, C. J. G. Plummer, and H.-H. Kausch, in: “Processing, morphology and properties of a thermotropic liquid crystalline polymer,” Polymer,34, No. 17, 3628–3637 (1993).Google Scholar
  10. 10.
    C. J. G. Plummer, Y. Wu, P. Davies, B. Zülle, A. Demarmels, and H.-H. Kausch, in: “The short- and long-term mechanical properties of filled and unfilled thermotropic liquid crystalline polymer injection moldings,” J. Appl. Polymer Sci.,48, 731–740 (1993).Google Scholar
  11. 11.
    C. J. G. Plummer, B. Zülle, A. Demarmels, and H.-H. Kausch, “The structure of filled and unfilled thermotropic liquid crystalline polymer injection moldings,” J. Appl. Polymer Sci.,48, 751–766 (1993).Google Scholar
  12. 12.
    J. A. H. M. Buijs and G. J. Vroege, “Physical ageing in a thermotropic liquid crystalline polymer,” Polymer,34, No. 22, 4692–4696 (1993).Google Scholar
  13. 13.
    W. Brostow, M. Hess, and B. L. Lopez, “Phase structures and phase diagrams in polymer liquid-crystal systems: copolymers of poly(ethylene terephthalate) and p-hydroxybenzoic acid,” Macromolecules,27, No. 8, 2262–2269 (1994).Google Scholar
  14. 14.
    S. E. Kudryavtseva and V. V. Kovriga, “Self-reinforcement of liquid-crystalline polymers upon static and dynamic loading,” Mekhanika Kompozitnykh Materialov,30, No. 4, 435–441 (1994).Google Scholar
  15. 15.
    P. Zhuang, T. Kyn, and J. L. White, “Characteristics of hydroxybenzoic acid-ethylene terephtalate copolymers and their blends with polystyrene, polycarbonate and polyethylene terephthalate,” Polymer Eng. Sci.,28, No. 17, 1095–1106 (1988).Google Scholar
  16. 16.
    M. R. Nobile, E. Amendola, L. Nicolais, D. Acierno, and C. Carfagna, “Physical properties of blends of polycarbonate and a liquid crystalline copolyester,” Polymer Eng. Sci.,29, No. 4, 244–257 (1989).Google Scholar
  17. 17.
    Q. Lin, J. Jho, and A. Yee, “Effect of drawing on structure and properties of a liquid crystalline polymer and polycarbonate in-situ composite,” Polymer Eng. Sci.,33, No. 13, 789–798 (1993).Google Scholar
  18. 18.
    D. Berry, S. Kenig, and A. Siegmann, “The mechanism of skin-core morphology formation in extrudates of polycarbonate/liquid crystalline polymer blends,” Polymer Eng. Sci.,33, No. 23, 1548–1558 (1993).Google Scholar
  19. 19.
    Q. Lin and A. F. Yee, “Elastic modulus ofin-situ composites of a liquid crystalline polymer and polycarbonate,” Polymer Composites,15, No. 2, 156–162 (1994).Google Scholar
  20. 20.
    Q. Lin and A. F. Yee, “Mechanical properties ofin situ composites based on polycarbonate and a liquid crystalline polymer,” Polymer,35, No. 16, 3463–3469 (1994).Google Scholar
  21. 21.
    K. Engberg, O. Strömberg, J. Martinsson, and U. W. Gedde, “Thermal and mechanical properties of injection molded liquid crystalline polymer/amorphous polymer blends,” Polymer Eng. Sci.,34, No. 17, 1336–1345 (1994).Google Scholar
  22. 22.
    D. E. Turek, G. P. Simon, and C. Tiu, “Influence of processing history on the properties of a thermotropic copolyester/polycarbonate blend,” Polymer Eng. Sci.,35, No. 1, 52–63 (1995).Google Scholar
  23. 23.
    M. T. Heino and J. V. Seppäläa, “Studies on compatibilization of blends of polypropylene and a thermotropic liquid crystalline polymer,” J. Appl. Polymer Sci.,48, 1677–1687 (1993).Google Scholar
  24. 24.
    A. Datta, H. H. Chen, and D. G. Baird, “The effect of compatibilization on blends of polypropylene with a liquid-crystalline polymer,” Polymer,34, No. 4, 759–766 (1993).Google Scholar
  25. 25.
    Y. Quin, D. L. Brydon, R. R. Mather, and R. H. Wardman, “Fibers from polypropylene and liquid crystal polymer (LCP) blends: 1. Effect of LCP concentration,” Polymer,34, No. 6, 1196–1201 (1993).Google Scholar
  26. 26.
    Y. Quin, D. L. Brydon, R. R. Mather, and R. H. Wardman, “Fibers from polypropylene and liquid crystal polymer blends: 2. Effect of extrusion and drawing conditions,” Polymer,34, No. 6, 1202–1206 (1993).Google Scholar
  27. 27.
    Y. Quin, D. L. Brydon, R. R. Mather, and R. H. Wardman, “Fiber from polypropylene and liquid crystal polymer blends: 3. A comparison of polyblend fibers containing Vectra A900, Vectra B950 and Rodrun LC3000,” Polymer,34, No. 17, 3597–3604 (1993).Google Scholar
  28. 28.
    R. D. Maksimov and T. Sterzynski, “Mechanical properties of blends of liquid crystalline copolyesters with polypropylene,” Mekhanika Kompozitnykh Materialov,30, No. 4, 442–450 (1994).Google Scholar
  29. 29.
    R. E. S. Bretas and D. G. Baird, “Miscibility and mechanical properties of poly(ether imide)/poly(ether ketone)/liquid crystalline polymer ternary blends,” Polymer,33, No. 24, 5233–5244 (1992).Google Scholar
  30. 30.
    B. De Carvalho and R. E. S. Bretas, “Crystallization kinetics of a PEEK/LCP blend,” J. Appl. Polymer Sci.,55, No. 2, 233–246 (1995).Google Scholar
  31. 31.
    S. Lee, S. M. Hong, Y. Seo, T. S. Park, S. S. Hwang, K. U. Kim, and J. W. Lee, “Characterization and processing of blends of poly(ether imide) with thermotropic liquid crystalline polymer,” Polymer,35, No. 3, 519–531 (1994).Google Scholar
  32. 32.
    N. Ogata, T. Tanaka, T. Ogihara, K. Yoshida, Y. Kondou, K. Hayashi, and N. Yashida, “Effects of the addition of a liquid crystalline copolyester to polystyrenes on blending torque and mechanical properties of blends,” J. Appl. Polymer Sci.,48, 383–391 (1993).Google Scholar
  33. 33.
    V. G. Kulichikhin and N. A. Platé, “Blended composites based on liquid-crystalline thermoplastics,” Vysokomolek. Soedin., Ser. A,33, No. 1, 3–38 (1991).Google Scholar
  34. 34.
    K. Engberg, M. Ekblad, P.-E. Werner, and U. W. Gedde, “Thermal and mechanical properties of injection molded blends of a liquid crystalline polymer and poly(butylene terephtalate),” Polymer Eng. Sci.,34, No. 17, 1346–1353 (1994).Google Scholar
  35. 35.
    S. H. Jang and B. S. Kim, “Mechanical properties and morphology of liquid crystalline copolyester-amide and amorphous polyamide blends,” Polymer Eng. Sci.,34, No. 10, 847–856 (1994).Google Scholar
  36. 36.
    R. D. Maksimov and V. A. Kochetkov, “Thermal deformation prediction of hybrid composites with viscoelastic components,” Sci. Eng. Composite Materials,1, No. 4, 117–127 (1989).Google Scholar
  37. 37.
    W. Brostow and D. Samatowicz, “Internal friction in two longitudinal polymer liquid crystal esters,” Polymer Eng. Sci.,33, No. 10, 581–586 (1993).Google Scholar
  38. 38.
    J. D. Ferry, Viscoelastic Properties of Polymers [Russian translation], Inostr. Lit., Moscow (1963).Google Scholar
  39. 39.
    V. H. Kenner, W. G. Knauss, and H. Chai, “A simple creep torsiometer and its use in the thermorheological characterization of a structural adhesive,” Experimental Mechanics,22, No. 2, 72–80 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. D. Maksimov
    • 1
  1. 1.Institute of Polymer MechanicsLatvian Academy of SciencesRigaLatvia

Personalised recommendations