Mechanics of Composite Materials

, Volume 25, Issue 2, pp 153–159 | Cite as

Effective characteristics of determining relationships for thermorheologically simple composites

  • V. M. Pestrenin
  • I. V. Pestrenina


Effective Characteristic Simple Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. Shepery, “Viscoelastic behavior of composition materials,” in: Composition Materials [Russian translation], Vol. 2, Moscow (1978), pp. 102–195.Google Scholar
  2. 2.
    R. D. Maksimov and É. Z. Plume, “Creep of unidirectional reinforced polymer composites,” Mekh. Kompozitn. Mater., No. 2, 215–223 (1984).Google Scholar
  3. 3.
    R. D. Maksimov and É. Z. Plume, “Predicting creep in unidirectional reinforced plastic with thermorheologically simple structural corponents,” Mekh. Kompozitn. Mater., No. 6, 1081–1089 (1982).Google Scholar
  4. 4.
    V. V. Kovriga, E. S. Osipova, I. I. Farberova, and K. Ya. Artanova, “Temperature-time superposition as applies to relaxation properties of fiberglass and its binder,” Mekh. Polim., No. 2, 360–363 (1972).Google Scholar
  5. 5.
    Yu. S. Pervushin, V. P. Pavlov, and V. V. Zainullin, “Application of temperature-time analogy to calculation of creep strains in fiberglasses in a nonstationary temperature field,” Probl. Prochn., No. 6, 27–29 (1976).Google Scholar
  6. 6.
    L. P. Khoroshun and B. P. Maslov, Methods of Automated Computation of the Physicomechanical Constants of Composition Materials [in Russian], Kiev (1980).Google Scholar
  7. 7.
    T. D. Shermergor, Theory of Elasticity of Microheterogeneous Media [in Russian], Moscow (1977).Google Scholar
  8. 8.
    A. M. Skudra, F. Ya. Bulavs, and K. A. Rotsens, Creep and Static Fatigue of Reinforced Plastics [in Russian], Riga (1981).Google Scholar
  9. 9.
    B. E. Pobedrya, Mechanics of Composition Materials [in Russian], Moscow (1984).Google Scholar
  10. 10.
    E. A. Sokolov, “Feasibility of predicting the creep of laminar organoplastics from the properties of a unidirectional reinforced material,” Mekh. Kompozitn. Mater., No. 1, 142–147 (1980).Google Scholar
  11. 11.
    V. M. Pestrenin and I. V. Pestrenina, “Use of approximations in problems of the linear theory of viscoelasticity of an anisotropy body,” Mekh. Kompozitn. Mater., No. 3, 462–467 (1988).Google Scholar
  12. 12.
    A. A. Malmeister and Yu. O. Yanson, “Predicting the relaxation properties of epoxy binder ÉDT-10 in a complex stressed state,” Mekh. Kompozitn. Mater., No. 5, 889–894 (1983).Google Scholar
  13. 13.
    R. D. Maksimov, É. Z. Plume, and V. M. Ponomarev, “Fatigue characteristics of unidirectional reinforced hybrid comopsites,” Mekh. Komopozitn. Mater., No. 1, 13–19 (1983).Google Scholar
  14. 14.
    N. M. Richardson (ed.), Commercial Polymeric Composition Materials [Russian translation], Moscow (1980).Google Scholar
  15. 15.
    V. M. Pestrenin and I. V. Pestrenina, “Calculating the effective relaxation kernels of laminar composites,” Mekh. Kompozitn. Mater., No. 4, 623–629 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. M. Pestrenin
    • 1
  • I. V. Pestrenina
    • 1
  1. 1.A. M. Gor'ky State UniversityPerm

Personalised recommendations