Oxidation of Metals

, Volume 12, Issue 3, pp 227–245 | Cite as

Oxidation-sulfidation behavior of iron-chromium-nickel alloys

  • M. Danielewski
  • K. Natesan


Oxidation-sulfidation studies of Fe-Cr-8Ni alloys with 4, 12, and 22 wt. % Cr were conducted at 750 and 875°C in multicomponent gas mixtures that contained CO, CO2, CH4, H2, and H2S. The reaction processes resulted in parabolic kinetics. A chromium concentration in the range 0–12 wt. % in the alloy had a negligible effect on the parabolic rate constant; however, the rate constant for the alloy with 22 wt. % Cr was significantly lower. For a given sulfur partial pressure, the oxygen partial pressures required for the formation of a continuous oxide layer in an Fe-22Cr-8Ni alloy were ∼102 to 103 times those calculated for Cr-Cr2O3 equilibrium at temperatures of 875 and 750° C, respectively.

Key words

oxidation sulfidation iron-chromium-nickel alloy thermochemical diagram parabolic rate constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . Natesan,Proceedings of the Conference on Prevention of Failures in Coal-Conversion Systems, NBS Special Publication 468 (1977), p. 159.Google Scholar
  2. 2.
    K. Natesan and O. K. Chopra,Proceedings of Symposium on Properties of High Temperature Alloys, Z. A. Foroulis and F. S. Pettitt, eds. (The Electrochemical Society, Princeton, 1976), p. 493.Google Scholar
  3. 3.
    W. C. Hagel,Trans. ASME 56, 583 (1963).Google Scholar
  4. 4.
    E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 104, 334 (1957).Google Scholar
  5. 5.
    D. Kaplan, A. Harvey, and M. Cohen,J. Electrochem. Soc. 108, 134 (1961).Google Scholar
  6. 6.
    T. F. Kassner, L. C. Walters, and R. E. Grace,Thermodynamics, Vol. II (International Atomic Energy Agency, Vienna, 1966).Google Scholar
  7. 7.
    K. N. Strafford and A. F. Hampton,J. Less-Common Met. 21, 305 (1970).Google Scholar
  8. 8.
    A. Davin and D. Coutsouradis,Cobalt 17, 1 (1962).Google Scholar
  9. 9.
    T. Narita and K. Nishida,Oxid. Met. 6, 157 (1973).Google Scholar
  10. 10.
    K. Nishida, K. Nakayama, and T. Narita,Corros. Sci 13, 759 (1973).Google Scholar
  11. 11.
    S. K. Verma, D. P. Whittle, and J. Stringer,Oxid. Met. 5, 169 (1972).Google Scholar
  12. 12.
    K. Ohta, T. Wada, K. Fuehi, and T. Mukaibo,Proceedings of the Fifth International Congress on Metallic Corrosion, Tokyo 1972, (National Association of Corrosion Engineers, Houston, Texas, 1972), p. 728.Google Scholar
  13. 13.
    Y. Jeannin, C. Mannerskantz, and F. D. Richardson,Trans. Metall, Soc. AIME 227, 300 (1963).Google Scholar
  14. 14.
    J. F. Elliott and M. Gleiser,Thermochemistry for Steelmaking, Vol. I (Addison-Wesley, Reading, Pa., 1960).Google Scholar
  15. 15.
    G. C. Wood, T. Hodgkiess, and D. P. Whittle,Corros. Sci. 6, 129 (1966).Google Scholar
  16. 16.
    G. C. Wood, I. G. Wright, T. Hodgkiess, and D. P. Whittle,Werks. Korros. 21, 900 (1970).Google Scholar
  17. 17.
    C. Wagner,Z. Elektrochem. 63, 772 (1959).Google Scholar
  18. 18.
    R. A. Rapp,Corrosion,21, 382 (1965).Google Scholar
  19. 19.
    K. Hauffe and A. Rahmel,Z. Phys. Chem. (Leipzig) 199, 152 (1952).Google Scholar
  20. 20.
    S. Mrowec, T. Walec, and T. Werber,Oxid. Met. 1, 93 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • M. Danielewski
    • 1
  • K. Natesan
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonne

Personalised recommendations