Skip to main content
Log in

The use of amorphous and microcrystalline silicon for silicon heterojunction bipolar transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The modification of the emitter structure of silicon bipolar transistors results in more freedom in the choice between sometimes conflicting device parameters. The approach followed in this work is the use of an amorphous silicon (a-Si:H) or microcrystalline silicon (μc-Si) emitter, creating a real heterojunction with the crystalline silicon base. Due to the larger bandgap of these emitter materials, the back injection of minority carriers is strongly suppressed in comparison with conventional bipolar transistors. Furthermore, the small temperature coefficient of the current gainβ allows the use of these heterojunction bipolar transistors (HBT) over a wide temperature range. Most likely, the biggest advantage of such HBTs is that a better high-frequency behaviour could be obtained. However, some problems still need to be solved such as the recombination at the emitter-base interface and the high resistivity of the emitter material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. De Graaf: Solid St. Electr.10, 578 (1973)

    Google Scholar 

  2. T.H. Ning, R.D. Isaac: IEEE Trans. ED-27, 2051 (1980)

    Google Scholar 

  3. P. Ashburn, B. Soerowirdjo: IEEE Trans. ED-31, 853 (1984)

    Google Scholar 

  4. H.C. De Graaf, J.G. De Groot: IEEE Trans. ED-26, 1771 (1979)

    Google Scholar 

  5. M.A. Green, R.D. Godfrey: IEEE EDL-4, 225 (1983)

    Google Scholar 

  6. N. Oh-uchi, H. Hayashi, H. Yamoto, T. Matsushita: IEDM Technical Digest (1984) p. 746

  7. E. Yablonovitch, T. Gmitter: IEEE EDL-6, 597 (1985)

    Google Scholar 

  8. M. Ghannam, J. Nijs, R. De Keersmaecker, R. Mertens: IEDM Techn. Digest (1984) p. 746

  9. R.L. Anderson: Solid State Electr.5, 341 (1962)

    Google Scholar 

  10. H. Matsura, T. Okushi, K. Tanaka: J. Appl. Phys.55, 1012 (1984)

    Google Scholar 

  11. F. Evangelisti: J. Non-Cryst. Solids77 & w78, 969–978 (1985)

    Google Scholar 

  12. M. Cuniot, Y. Marfaing: J. Non-Cryst. Solids77 & 78, 987 (1985)

    Google Scholar 

  13. K. Sasaki, M. Rahman, S. Furukawa: IEEE EDL-6, 311 (1985)

    Google Scholar 

  14. H. Kroemer: Proc. IEEE70, 13 (1982)

    Google Scholar 

  15. H. Schade, Z.E. Smith: J. Appl. Phys.59, 1682 (1986)

    Google Scholar 

  16. A.R. Riben, D.L. Feucht: Int. J. Electronics20, 1359 (1966)

    Google Scholar 

  17. Y. Kanemitsu et al.: Jpn. J. Appl. Phys.25, 142–144 (1986)

    Google Scholar 

  18. J. Lindmayer, C.Y. Wringley:Fundamentals of semiconductor devices, Princeton, NJ (Van Nostrand 1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from University of Florida, Gainesville, Florida, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symons, J., Ghannam, M., Nijs, J. et al. The use of amorphous and microcrystalline silicon for silicon heterojunction bipolar transistors. Appl. Phys. A 41, 291–295 (1986). https://doi.org/10.1007/BF00616051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616051

PACS

Navigation