Skip to main content
Log in

Photoenhancement mechanism for oxygen chemisorption on GaAs(110) using visible light

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Visible light from an argon ion laser (514.5 nm, 3 W/cm2) is seen to increase oxygen chemisorption on cleaved GaAs(110) surfaces up to a final coverage between one and two monolayers. Using photoemission spectroscopy to measure the oxygen coverage after simultaneous exposure of the surface to oxygen and light, we have determined that oxygen uptake for photoenhanced exposures is independent of sample temperature and doping type. In addition, significantly less enhancement is seen for weakly bound oxidizing molecules (N2O) relative to the effects with molecular oxygen. These results are explained by a photoenhancement mechanism in which energy is released in a surface recombination event, possibly in the form of nonthermal phonons, causing physisorbed gas molecules to dissociate and thereby overcoming a major rate limiting step of the reaction in the dark. This reaction mechanism is supported by calculations of the surface recombination rates and free carrier densities at the surface which show that only the recombination rate is correlated with enhanced oxygen uptake. Other mechanisms and experimental data are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example,Materials Research Society Symposia Proceedings (Materials Research Society, Pittsburgh, Pennsylvania) from Symposia B of the Fall Meetings from 1985–1987

  2. W.G. Petro, I. Hino, S. Eglash, I. Lindau, C.Y. Su, W.E. Spicer: J. Vac. Sci. Technol.21, 405 (1982)

    Google Scholar 

  3. F. Bartels, L. Surkamp, H.J. Clemens, W. Mönch: J. Vac. Sci. Technol.B 1, 756 (1983)

    Google Scholar 

  4. V.M. Bermudez: J. Appl. Phys.54, 6795 (1983)

    Google Scholar 

  5. F. Bartels, W. Mönch: Surf. Sci.143, 315 (1984)

    Google Scholar 

  6. K.A. Bertness: Ph. D. Thesis, Stanford University, 1987

  7. H. Okabe:Photochemistry of Small Molecules (Wiley, New York 1978) pp. 181–183, 223

    Google Scholar 

  8. K.A. Bertness, W.G. Petro, J.A. Silberman, D.J. Friedman, W.E. Spicer: J. Vac. Sci. Technol. A3, 1464 (1985)

    Google Scholar 

  9. K.A. Bertness, T.T. Chiang, C.E. McCants, P.H. Mahowald, A.K. Wahi, T. Kendelewicz, I. Lindau, W.E. Spicer: Surf. Sci.185, 544 (1987)

    Google Scholar 

  10. C.Y. Su, I. Lindau, P.W. Chye, P.R. Skeath, W.E. Spicer: Phys. Rev. B25, 4045 (1982)

    Google Scholar 

  11. K.A. Bertness, J.-J. Yeh, D.J. Friedman, P.H. Mahowald, A.K. Wahi, T. Kendelewicz, I. Lindau, W.E. Spicer: Phys. Rev. B (in press)

  12. K.A. Bertness, C.E. McCants, T.T. Chiang, P.H. Mahowald, A.K. Wahi, T. Kendelewicz, I. Lindau, W.E. Spicer: InProceedings of the Materials Research Society, Vol. 75, ed. by V.M. Donelly, I.P. Herman, M. Hirose (Materials Research Society, Pittsburgh, PA 1987) p. 575

    Google Scholar 

  13. A.J. Springe Thorpe, S.J. Ingrey, B. Emmerstorfer, P. Mandeville, W.T. Moore: Appl. Phys. Lett.50, 77 (1987). The potential well depth is determined by assuming that 1 ML of oxide is in equilibrium with the reported overpressure of 10−6 Torr at 855 K, the reported desorption temperature

    Google Scholar 

  14. S.A. Schafer, S.A. Lyon: J. Vac. Sci. Technol.19, 494 (1981)

    Google Scholar 

  15. G. Landgren, R. Ludeke, Y. Jugnet, J.F. Morar, F.J. Himpsel: J. Vac. Sci. Technol. B2, 351 (1984)

    Google Scholar 

  16. H.R. Philipp, H. Ehrenreich: InSemiconductors and Semimetals, Vol. 3, Optical Properties of III–V Compounds, ed. by R.K. Willardson, Albert C. Beer (Academic, New York 1967) p. 112

    Google Scholar 

  17. M.D. Sturge: Phys. Rev.127, 768 (1962)

    Google Scholar 

  18. S.M. Sze:Physics of Semiconductor Devices, 2nd edn. (Wiley, New York 1981) pp. 29–30, 850

    Google Scholar 

  19. J. Vilms, William E. Spicer: J. Appl. Phys.36, 2815 (1965)

    Google Scholar 

  20. D.E. Aspnes: Surf. Sci.132, 406 (1983)

    Google Scholar 

  21. D.T. Stevenson, R.J. Keyes: Physica20, 66 (1954)

    Google Scholar 

  22. J.L. Freeouf, J.M. Woodall: Appl. Phys. Lett.39, 727 (1981)

    Google Scholar 

  23. R.W. Grant, J.R. Waldrop, S.P. Kowalczyk, E.A. Kraut: J. Vac. Sci. Technol.19, 477 (1981)

    Google Scholar 

  24. W.E. Spicer, Z. Lilietal-Weber, E.R. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, K. Miyano, P.H. Mahowald, I. Lindau: Presented at PCSI 1988. J. Vac. Sci. Technol. B (submitted)

  25. J. Tersoff: J. Vac. Sci. Technol.B3, 1157 (1985)

    Google Scholar 

  26. W. Mönch: J. Vac. Sci. Technol.B4, 1085 (1986)

    Google Scholar 

  27. R.E. Allen, J.D. Dow: Solid State Commun.45, 379 (1983)

    Google Scholar 

  28. W.E. Spicer, P. Pianetta, I. Lindau, P.W. Chye: J. Vac. Sci. Technol.14, 885 (1977)

    Google Scholar 

  29. C.B. Duke, C. Mailhiot, A. Paton, D.J. Chadi, A. Kahn: J. Vac. Sci. Technol.B3, 1087 (1985)

    Google Scholar 

  30. G. Margaritondo, L.J.Brillson, N.G. Stoffel: Solid State Commun.35, 277 (1980)

    Google Scholar 

  31. C.H. Henry, D.V. Lang: Phys. Rev. B15, 989 (1977)

    Google Scholar 

  32. M. Ilegems: InThe Technology and Physics of Molecular Beam Epitaxy, ed. by E.H.C. Parker (Plenum, New York 1985) pp. 136–137

    Google Scholar 

  33. K. Mettler: Appl. Phys.12, 75 (1977)

    Google Scholar 

  34. J.M. Woodall, G.D. Pettit, T. Chappell, H.J. Hovel: J. Vac. Sci. Technol.16, 1389 (1979)

    Google Scholar 

  35. V.M. Bermudez: J. Vac. Sci. Technol. A5, 541 (1987)

    Google Scholar 

  36. H.-U. Baier, L. Koenders, W. Mönch: J. Vac. Sci. Technol. B4, 1095 (1986)

    Google Scholar 

  37. W. Mönch: Surf. Sci.168, 577 (1986)

    Google Scholar 

  38. N. Cabrera, N.F. Mott: Rep. Prog. Phys.12, 163 (1948)

    Google Scholar 

  39. J.W. Gadzuk: Comments At. Mol. Phys.16, 219 (1985)

    Google Scholar 

  40. J.R. Troxell, A.P. Chatterjee, G.D. Watkins, L.C. Kimerling: Phys. Rev. B19, 5336 (1979)

    Google Scholar 

  41. D.G. McLean, M.G. Roe, A.I. D'Souza, P.E. Wigen: Appl. Phys. Lett.48, 992 (1986)

    Google Scholar 

  42. C.I.H. Ashby: Appl. Phys. Lett.46, 752 (1985)

    Google Scholar 

  43. Heinz Gerischer: J. Vac. Sci. Technol.15, 1422 (1978)

    Google Scholar 

  44. P. Pianetta, I. Lindau, C.M. Garner, W.E. Spicer: Phys. Rev. B18, 2792 (1978)

    Google Scholar 

  45. C.F. Yu, M.T. Schmidt, D.V. Podlesnik, R.M. Osgood, Jr.: J. Vac. Sci. Technol. B5, 1087 (1987)

    Google Scholar 

  46. M. Fukuda, K. Takahei: J. Appl. Phys.57, 129 (1985)

    Google Scholar 

  47. S.A. Schafer, S.A. Lyon: J. Vac. Sci. Technol.21, 422 (1982)

    Google Scholar 

  48. E.M. Young, W.A. Tiller: Appl. Phys. Lett.50, 46 (1987)

    Google Scholar 

  49. E.M. Young, W.A. Tiller: Appl. Phys. Lett.50, 80 (1987)

    Google Scholar 

  50. C.T. Rettner, L.A. DeLouise, D.J. Auerbach: J. Chem. Phys.85, 1131 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertness, K.A., Mahowald, P.H., McCants, C.E. et al. Photoenhancement mechanism for oxygen chemisorption on GaAs(110) using visible light. Appl. Phys. A 47, 219–228 (1988). https://doi.org/10.1007/BF00615927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00615927

PACS

Navigation