Skip to main content
Log in

Voltage decay at passivated zinc anodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A study has been made of the passivating process at a zinc electrode in KOH solutions. Zinc electrodes were passivated at a constant overpotential and the current response during passivation was measured. The potential response after the passivating potential was removed was also measured.

The current during passivation soon reached a semi-steady-state value which increased with increasing overpotential but varied only slightly with changing KOH concentrations.

When electrodes were passivated at overpotentials >325 mV, the open circuit voltage decay showed an arrest, the duration of which decreased with increasing KOH concentration. This duration increased when ZnO was dissolved in the electrolyte, when the temperature was decreased, and when the passivating overpotential was increased.

The results are interpreted by assuming that passivation is due to the formation of a film, possibly Zn(OH)2, which can dissolve in the electrolyte. The potential of the electrode is a mixed potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Faizullin and L. K. Yuldasheva,Uchenye Zapiski Kazan. Gosudarst, Univ. im Ul'yanova-Lenina, Obshcheuniv, Sbornsk 116, 82 (1956).

    Google Scholar 

  2. K. Huber,Helv. Chim. Acta 26, 1037 (1943).

    Google Scholar 

  3. K. Huber,J. Electrochem. Soc. 100, 376 (1953).

    Google Scholar 

  4. J. Kamecki and Z. Zembura,Bull. acad. polon. Sci. Cl III2, 181 (1954).

    Google Scholar 

  5. R. Landsberg,Wissen Z. Techn. Hochschule für Chemie, Leuna-Merseburg1, 93 (1958).

    Google Scholar 

  6. I. Sanghi and W. F. K. Wynne-Jones,Proc. Indian Acad. Sci. 47, 49 (1958).

    Google Scholar 

  7. R. Landsberg,Z. Elektrochem. 61, 1162 (1957).

    Google Scholar 

  8. R. Landsberg,Z. phys. Chem. 206, 291 (1957).

    Google Scholar 

  9. W. Lorenz,Z.phys. Chem. (Frankfurt)20, 95 (1959).

    Google Scholar 

  10. I. Sanghi and M. Fleischmann,Electrochim. Acta 1, 161 (1959).

    Google Scholar 

  11. J. Euler,ibid.,11, 701 (1966).

    Google Scholar 

  12. H. Bartelt and R. Landsberg,Z. phys. Chem. 222, 217 (1963).

    Google Scholar 

  13. M. Eisenberg, H. F. Bauman and D. M. Brettner,J. Electrochem. Soc. 108, 909 (1961).

    Google Scholar 

  14. N. A. Hampson and M. J. Tarbox,ibid.,110, 95 (1963).

    Google Scholar 

  15. N. A. Hampson, M. J. Tarbox, J. R. Lilley, and J. P. G. Farr,Electrochem. Technol. 309 (1964).

  16. H. J. S. Sand,Phil. Mag. 1, 45 (1901).

    Google Scholar 

  17. T. P. Dirkse, D. De Wit, and R. Shoemaker,J. Electrochem. Soc. 115, 442 (1968).

    Google Scholar 

  18. G. S. Vosdvizhenskil and E. D. Kochmann,Zhur. fiz. Khim. 39, 657 (1965).

    Google Scholar 

  19. J. P. G. Farr and N. A. Hampson,J. Electroanalytical Chem. 13, 433 (1967).

    Google Scholar 

  20. H. Degn,Trans. Faraday Soc. 64, 1348 (1968).

    Google Scholar 

  21. T. P. Dirkse, ‘Passivation Studies on the Zinc Electrode,’ Paper 30, Seventh International Power Sources Symposium, Brighton, England (1970).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirkse, T.P. Voltage decay at passivated zinc anodes. J Appl Electrochem 1, 27–33 (1971). https://doi.org/10.1007/BF00615743

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00615743

Keywords

Navigation