Mechanics of Composite Materials

, Volume 31, Issue 3, pp 266–270 | Cite as

Stochastic multi-objective optimization of a viscoelastic composite plate

  • G. A. Teters
  • A. F. Kregers
  • Yu. G. Melbardis
Article

Abstract

A layered viscoelastic rectangular plate fiber-reinforced in three directions and compressed in one direction has been studied. Two plate properties, namely, the critical compressive stress σcr and the coefficient of linear thermal expansion αxx, were analyzed by varying two parameters of the reinforcement geometry. The properties of the plate are determined by the properties of the composite components, eight of which are considered stochastic. The problem was solved for two variants: αxx → min or αxx → max. The calculations were carried out for three time intervals: t = 0, 27 days, and ∞. For t = 0, the region of t≂ real plate properties is determined with isolines for design parameters. Multi-objective compromise solutions are given for all three times t for each of the two variants along with the parameters of the property scatter ellipses.

Keywords

Thermal Expansion Compressive Stress Design Parameter Rectangular Plate Composite Plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. N. Rabotnov, Elements of Hereditary Mechanics of Solids [in Russian], Moscow (1977).Google Scholar
  2. 2.
    A. M. Skudra, F. Ya. Bulavs, and K. A. Rotsens, Creep and Static Fatigue of Reinforced Plastics [in Russian], Riga (1977).Google Scholar
  3. 3.
    A. F. Kregers and G. A. Teters, "Use of averaging methods for determining the viscoelastic properties of spatially reinforced composites," Mekh. Kompozitn. Mater., No. 4, 617–624 (1979).Google Scholar
  4. 4.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Polymer and Composite Materials [in Russian], Zinatne, Riga (1980).Google Scholar
  5. 5.
    Yu. G. Melbardis, A. F. Kregers, and G. A. Teters, "Probability of realization of a compromise projection of a layered composite plastic (taking account of limitations)," Mekh. Kompozitn. Mater., 30, No. 3, 391–397 (1994).Google Scholar
  6. 6.
    V. A. Kochetkov, "Effective elastic and thermophysical parameters of a one-directional hybrid composite. Communications 1, 2," Mekh. Kompozitn. Mater., No. 1, 38–46 (1987); No. 2, 250–255 (1987).Google Scholar
  7. 7.
    A. F. Kregers, "Mathematical model for thermal expansion of spatially reinforced composites," Mekh. Kompozitn. Mater., No. 3, 433–441 (1988).Google Scholar
  8. 8.
    A. F. Kregers and M. F. Rektin'sh, "Analysis of the form of the multidimensional region of properties of an optimized composite," Mekh. Kompozitn. Mater.. No. 5. 876–884 (1991).Google Scholar
  9. 9.
    A. F. Kregers, Yu. G. Melbardis, and A. Zh. Lagzdin, "Study of the three-dimensional scatter region of the correlated properties of a composite," Mekh. Kompozitn. Mater., No. 3, 311–316 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • G. A. Teters
    • 1
  • A. F. Kregers
    • 1
  • Yu. G. Melbardis
    • 1
  1. 1.Institute of Polymer MechanicsLatvian Academy of SciencesRigaLatvia

Personalised recommendations