Advertisement

Journal of Applied Electrochemistry

, Volume 10, Issue 5, pp 611–621 | Cite as

The influence of temperature on the current peak multiplicity related to the nickel hydroxide electrode

  • H. Gómez Meier
  • J. R. Vilche
  • A. J. Arvia
Article

Abstract

The splitting of the anodic and cathodic potentiodynamic E/I display of the nickel hydroxide electrode in 1 N KOH between 0 and 75° C is reported. The formal first order rate constants for the chemical reactions which occur simultaneously with the electrochemical steps, and the corresponding activation energies are evaluated. The results are discussed on the basis of the reaction model recently proposed for the nickel hydroxide electrode.

Keywords

Physical Chemistry Nickel Activation Energy Hydroxide Reaction Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. L. Weininger and M. W. Breiter,J. Electrochem. Soc. 110 (1963) 484.Google Scholar
  2. [2]
    Idem, ibid 111 (1964) 707.Google Scholar
  3. [3]
    Yu. N. Chernykh and A. A. Yakovleva.Elektrokhimiya 6 (1970) 1671.Google Scholar
  4. [4]
    D. M. MacArthur,J. Electrochem. Soc. 117 (1970) 422.Google Scholar
  5. [5]
    R. S. Schrebler Guzmán, J. R. Vilche and A. J. Arvía,J. Appl. Electrochem. 8 (1978) 67.Google Scholar
  6. [6]
    Idem, J. Electrochem. Soc. 125 (1978) 1578.Google Scholar
  7. [7]
    Idem, J. Appl. Electrochem. 9, (1979) 183.Google Scholar
  8. [8]
    Idem, ibid 9 (1979) 321.Google Scholar
  9. [9]
    A. J. Arvía,Israel J. Chem., in press.Google Scholar
  10. [10]
    J. R. Vilche and A. J. Arvía,Proceedings 4th International Symposium on Passivity, Virginia, 1977 (edited by R. P. Frankenthal and J. Kruger,) p. 861.Google Scholar
  11. [11]
    R. S. Schrebler Guzmán, J. R. Vilche and A. J. Arvía,Corns. Sci 18 (1978) 765.Google Scholar
  12. [12]
    G. Milazzo and S. Caroli, ‘Tables of Standard Electrode Potentials’, John Wiley, New York (1978).Google Scholar
  13. [13]
    G. Kortüm, ‘Kolorimetrie, Photometrie und Spektrometrie’, 4.Aufl., Berlin (1962).Google Scholar
  14. [14]
    H. Bode, K. Dehmelt and J. Witte,Electrochim. Acta 11 (1966) 1079.Google Scholar
  15. [15]
    E. Jost and F. Rufenacht,J. Electrochem. Soc. 113 (1966) 97.Google Scholar
  16. [16]
    S. U. Falk,J. Electrochem. Soc. 107 (1960) 661.Google Scholar
  17. [17]
    F. P. Kober,ibid 114 (1967) 215.Google Scholar
  18. [18]
    Y. N. Chernykh and A. A. Yakovleva,Elektrokhimiya 7 (1971) 530.Google Scholar
  19. [19]
    Idem, ibid 7 (1971) 533.Google Scholar
  20. [20]
    M. A. Hopper and J. L. Ord,J. Electrochem. Soc. 120 (1973) 183.Google Scholar
  21. [21]
    M. A. Aia,ibid 113 (1966) 1045.Google Scholar
  22. [22]
    H. Bode, K. Dehmelt and J. Witte,Z. anorg. allg. Chemie 366 (1969) 1.Google Scholar
  23. [23]
    R. S. McEwen,J. Phys. Chem. 75 (1971) 1782.Google Scholar
  24. [24]
    G. W. D. Briggs and M. Fleischmann,Trans. Faraday Soc. 67, (1971) 2397.Google Scholar
  25. [25]
    J. L. Ord,Proceedings 4th International Symposium on Passivity, Virginia 1977, (edited by R. P. Frankenthal and J. Kruger) p. 273.Google Scholar
  26. [26]
    J. L. Ord,Surface Sci. 56 (1976) 413.Google Scholar
  27. [27]
    N. Yu. Uflyand, A. M. Novakovskii and S. A. Rozentsveig,Elektrokhimiya 3 (1967) 537.Google Scholar
  28. [28]
    O. G. Malandin, P. D. Lukovtsev and T. S. Tikhonova,ibid 7 (1971) 655.Google Scholar
  29. [29]
    G. W. D. Briggs and W. F. K. Wynne-Jones,Electrochim. Acta 7 (1962) 241.Google Scholar
  30. [30]
    G. W. D. Briggs, G. W. Stott and W. F. K. Wynne-Jones,ibid 7 (1962) 249.Google Scholar
  31. [31]
    S. Le Bihan, J. Guenot and M. Figlarz,CR Acad. Sci. 270C (1970) 2131.Google Scholar
  32. [32]
    H. Bartl, H. Bode, G. Sterr and J. Witte,Electrochim. Acta. 16 (1971) 615.Google Scholar
  33. [33]
    W. Dennstedt and W. Löser,ibid 16 (1971) 429.Google Scholar
  34. [34]
    P. L. Bourgault and B. E. Conway,Canad. J. Chem. 38 (1960) 1557.Google Scholar
  35. [35]
    G. W. D. Briggs and M. Fleischmann,Trans. Faraday Soc. 62 (1966) 3217.Google Scholar
  36. [36]
    F. P. Kober,J. Electrochem. Soc. 112 (1965) 1064.Google Scholar
  37. [37]
    P. D. Lukovtsev,Elektrokhimiya 4 (1968) 379.Google Scholar
  38. [38]
    H. Ewe and A. Kalberlah,Electrochim. Acta 15 (1970) 1185.Google Scholar
  39. [39]
    V. A. Volynskii and Yu. N. Chernykh,Elek Elektrokhimiya 12 (1976) 979.Google Scholar
  40. [40]
    Idem, ibid 13 (1977) 1070.Google Scholar
  41. [41]
    G. Feuillade and R. Jacoud,Electrochim. Acta 14 (1969) 1297.Google Scholar
  42. [42]
    W. Feitknecht and P. Schindler, ‘Löslichkeits-konstanten’, Butterworths, London (1963).Google Scholar
  43. [43]
    S. Okada, T. Shiraishi and K. Watanabe,J. Soc. Chem. Ind. Japan 51 (1948) 129.Google Scholar
  44. [44]
    Idem, ibid 52 (1949) 37.Google Scholar
  45. [45]
    Idem, ibid 53 (1950) 5.Google Scholar
  46. [46]
    D. D. Macdonald, ‘Modern Aspects of Electrochemistry’, Vol. 11 (edited by B. E. Conway and J. O'M. Bockris) Plenum Press, New York, (1975) p. 141.Google Scholar
  47. [47]
    G. W. D. Briggs, ‘Electrochemistry’, Vol. 4, Specialist Periodical Reports, The Chemical Society, London (1974).Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • H. Gómez Meier
    • 1
  • J. R. Vilche
    • 1
  • A. J. Arvia
    • 1
  1. 1.División ElectroquimicaInstituto de Investigations Fisicoquimicas Teóricas y AplicadasLa PlataArgentina

Personalised recommendations