Advertisement

Journal of Comparative Physiology A

, Volume 161, Issue 2, pp 329–333 | Cite as

K+ and Ca++ in the receptor lymph of arthropod cuticular mechanoreceptors

  • Ulrike Grünert
  • Werner Gnatzy
Article

Summary

Two types of cuticular strain detectors, the campaniform sensilla on the haltere of the blowfly,Calliphora vicina, and the slit sensilla on the tibia of the spider,Cupiennius salei, were investigated. In campaniform sensilla a transepithelial voltage (43.6±10.7 mV), which depends on an intact metabolism, occurs. In spider slit sensilla no transepithelial voltage exists. The occurrence and the lack of a transepithelial voltage is paralleled with differences in the ionic composition of the receptor lymph in the two arthropod sensilla. We used double-barrelled ion-selective microelectrodes to measure potassium and calcium content in the receptor lymph with respect to the hemolymph. The potassium concentration in campaniform sensilla (121±15 mM) is five times larger than that of the wing hemolymph (25±7 mM) and nine times larger than that of the haltere hemolymph (13±3 mM). These differences are statistically significant. The calcium concentration in campaniform sensilla (0.8±0.5 mM) does not differ significantly from that of the hemolymph (1.2±0.7 mM). In spider slit sensilla no significant difference occurs between the potassium concentration of the receptor lymph (9.5 mM±5.5 mM) and that of the hemolymph (8±3 mM). The calcium concentration of the hemolymph (1.6±0.9mM) is 3 times higher than that of the receptor lymph (0.6±0.3 mM). This difference is significant.

Keywords

Calcium Potassium Calcium Concentration Calcium Content Ionic Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

TEV

transepithelial voltage

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch 112:212–246Google Scholar
  2. Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow London, pp 112–141Google Scholar
  3. Barth FG (1985) Slit sensilla and the measurement of cuticular strains. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 162–188Google Scholar
  4. Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. (Chelicerata Araneae). Z Morphol Tiere 68:343–369Google Scholar
  5. Burton RF (1975) Ringer solutions and physiological salines. Wright Scientechnica, BristolGoogle Scholar
  6. Chase HS (1984) Does calcium couple the apical and basolateral membrane permeabilities in epithelia? Am J Physiol 247:F869-F876Google Scholar
  7. Deitmer JW, Schlue WR (1983) Intracellular Na+ and Ca++ in leech Retzius neurons during inhibition of the Na+-K+ pump. Pflügers Arch 397:195–201Google Scholar
  8. Gnatzy W, Grünert U, Bender M (1987) Campaniform sensilla ofCalliphora vicina (Insecta, Diptera): I. Topography. Zoomorphology 106:312–319Google Scholar
  9. Grünert U (1985) Cuticulare Dehnungsrezeptoren von Insekten und Spinnen: Analyse der Rezeptorlymphe. Dissertation, Universität Frankfurt am MainGoogle Scholar
  10. Grünert U, Gnatzy W (1987) Macromolecules in the receptor lymph of campaniform sensilla. Histochemistry 86:617–620Google Scholar
  11. Hadley NF (1984) Cuticle: Ecological significance. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. Vol 1. Springer, Berlin Heidelberg New York, pp 685–693Google Scholar
  12. Jachmann H, Zweypfennig RCVJ, van der Molen JN (1982) Effects of haemolymph free cations on blowfly taste receptor responses. J Insect Physiol 28:943–946Google Scholar
  13. Kaissling K-E, Thorson J (1980) Insect olfactory sensilla: Structural, chemical, and electrical aspects of the functional organization. In: Hall LM, Hildebrand JG, Satelle DB (eds) Insect neurotransmitter, hormone, and pheromone receptors. Elsevier, Amsterdam, pp 261–282Google Scholar
  14. Küppers J (1974) Measurements on the ionic milieu of the receptor terminal in mechanoreceptive sensilla of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss 53:387–397Google Scholar
  15. Lettau J, Foster WA, Harker JE, Treherne JE (1977) Diel changes in potassium activity in the haemolymph of the cockroachLeucophaea maderae. J Exp Biol 71:171–186Google Scholar
  16. Loewe R, Linzen B, Stackelberg W von (1970) Die gelösten Stoffe in der Hämolymphe einer Spinne,Cupiennius salei Keyserling. Z Vergl Physiol 66:27–34Google Scholar
  17. Normann TC (1973) Membrane potential of the corpus cardiacum neurosecretory cells of the blowfly,Calliphora erythrocephala. J Insect Physiol 19:303–318Google Scholar
  18. Pichon Y (1970) Ionic content of haemolymph in the cockroachPeriplaneta americana. J Exp Biol 53:195–209Google Scholar
  19. Purves RD (1981) Microelectrode methods for intracellular recording and ionophoresis. Academic Press, London New York Toronto Sydney San FranciscoGoogle Scholar
  20. Rapp PE, Berridge MJ (1981) The control of transepithelial potential oscillations in the salivary gland ofCalliphora erythrocephala. J Exp Biol 93:119–132Google Scholar
  21. Rick R, Barth FG, Pawel A von (1976) X-ray microanalysis of receptor lymph in a cuticular arthropod sensillum. J Comp Physiol 110:89–95Google Scholar
  22. Rönnau K (1984) A simplified method for silanization of double barrelled ion-sensitive microelectrodes. Experientia 40:1019–1020Google Scholar
  23. Seyfarth E-A, Bohnenberger J, Thorson J (1982) Electrical and mechanical stimulation of a spider slit sensillum: outward current excites. J Comp Physiol 147:423–432Google Scholar
  24. Thurm U (1970) Untersuchungen zur funktionellen Organisation sensorischer Zellverbände. Verh Dtsch Zool Ges 1970:79–88Google Scholar
  25. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith D (eds) Insect biology in the future. Academic Press, New York, pp 735–764Google Scholar
  26. Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods. J Comp Physiol 134:119–130Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Ulrike Grünert
    • 1
  • Werner Gnatzy
    • 1
  1. 1.Zoologisches Institut der J.W. Goethe-UniversitätFrankfurt am Main 11Germany

Personalised recommendations