Skip to main content
Log in

Mass transfer in agitated vessels: energetic aspects

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper deals with the experimental determination of the mass transfer rates between the liquid of an agitated vessel and a spherical particle immersed in a reactor. The spatial distribution of the mass transfer coefficients is obtained using an electrochemical method and the influence of the most pertinent hydrodynamic parameters (impeller speed and fluid residence time inside the vessel) is deduced from experimental results. The study considers the two limiting cases of mechanical agitation alone and agitation induced by the liquid jets generated by the feed nozzles. It is shown that knowledge of the specific power dissipated per unit mass of fluid can be useful for the theoretical prediction of the mass transfer rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

molecular diffusion coefficient

d p :

particle diameter

D i :

impeller diameter

D v :

vessel diameter

E :

hydrodynamic parameter defined in Equation 8

H :

vessel height

k :

mass transfer coefficient

l :

characteristic length in Equation 2

M :

mass of liquid in the vessel

N :

rotational speed of agitator

N p :

specific power number

P :

specific power delivered

Q v :

volumetric flow rate of the feed fluid

S :

area for fluid injection

(Sc):

=v/D = liquid Schmidt number

(Sh):

=kd p /D kl/D = Sherwood number

U :

local fluid velocity

V :

vessel volume

x :

vertical distance between the bottom of vessel and the measuring point

α:

coefficient in Equation 2

ν:

kinematic viscosity

ρ:

fluid density

τ :

=V/Q v = residence time in vessel

References

  1. S. Boon-Long, C. Laguerie and J. P. Couderc,Chem. Eng. Sci. 33 (1978) 813.

    Google Scholar 

  2. R. B. Keey and J. B. Glen,AIChE J. 12 (1966) 401.

    Google Scholar 

  3. S. Sicardi, R. Conti, G. Baldi and R. Cresta,Third European Conf. on Mixing, University of York, England (4–6 April 1979) Paper D2, p. 217.

    Google Scholar 

  4. P. Sykes and A. Gomezplata,Can. J. Chem. Eng. 45 (1967) 189.

    Google Scholar 

  5. T. Mizushina, R. Ito, K. Kataoka, S. Yokoyama, Y. Nakajima and A. Fukuda,Kagaku Kogaku 32 (1968) 795.

    Google Scholar 

  6. T. Mizushina, R. Ito, S. Hiraoka, A. Ibusuki and I. Sakaguchi,J. Chem. Eng. Japan 2 (1969) 89.

    Google Scholar 

  7. M. S. Murthy, M. Balakrishna and J. S. N. Murthy,J. Ind. Inst. Sci. 60 (1978) 299.

    Google Scholar 

  8. I. Fort, J. Placek, F. Strek, Z. Jaworski and J. Karcz,Coll. Czechoslov. Chem. Commun. 44 (1979) 684.

    Google Scholar 

  9. D. N. Miller,Chem. Eng. Sci. 22 (1967) 1617.

    Google Scholar 

  10. A. Le Lan, H. Gibert and H. Angelino,ibid 27 (1972) 1979.

    Google Scholar 

  11. A. Le Lan and H. Angelino,ibid 29 (1974) 907.

    Google Scholar 

  12. P. H. Calderbank and Moo Young,ibid 16 (1961) 39.

    Google Scholar 

  13. S. Aiba,AIChE J. 4 (1958) 485.

    Google Scholar 

  14. J. P. Sachs and J. H. Rushton,Chem. Eng. Prog. 50 (1954) 597.

    Google Scholar 

  15. W. J. Kim and F. S. Manning,AIChE J. 10 (1964) 747.

    Google Scholar 

  16. F. A. Holland and F. S. Chapman, ‘Liquid Mixing and Processing in Stirred Tanks’, Reinhold Publishing Corporation, New York (1966).

    Google Scholar 

  17. A. Storck and F. Coeuret,Electrochim. Acta 22 (1977) 1155.

    Google Scholar 

  18. D. Hutin and A. Storck,J. Appl. Electrochem. 9 (1979) 351.

    Google Scholar 

  19. A. Storck, P. M. Robertson and N. Ibl,Electrochimica Acta 24 (1979) 373.

    Google Scholar 

  20. A. Storck and D. Hutin,Can. J. Chem. Eng. 58 (1980) 92.

    Google Scholar 

  21. J. F. Brodberger, PhD thesis, INPL, Nancy (1981).

    Google Scholar 

  22. J. H. Rushton, E. W. Costich and H. J. Everett,Chem. Eng. Prog. 46 (1950) 467.

    Google Scholar 

  23. P. M. Calderbank,Trans AIChE 36 (1958) 443.

    Google Scholar 

  24. A. W. Flynn and R. E. Treybal,AIChE J. 1 (1955) 324.

    Google Scholar 

  25. H. Gibert, J. P. Couderc and H. Angelino,Chem. Eng. Sci. 27 (1972) 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storck, A., Brodberger, J.F., Hutin, D. et al. Mass transfer in agitated vessels: energetic aspects. J Appl Electrochem 11, 727–733 (1981). https://doi.org/10.1007/BF00615177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00615177

Keywords

Navigation