Journal of Comparative Physiology A

, Volume 157, Issue 4, pp 417–421 | Cite as

The contribution of different colour receptors to a motor output in the fly

  • K. Kirschfeld
  • K. Vogt


A light flash given to the eye ofCalliphora leads to a movement of the legs (light induced leg reflex) which most likely normally initiates flight of the animal. This reflex has a short latency (12 to 30 ms, depending upon light intensity) and is quite reproducible without habituation. The spectral sensitivity of the reflex shows that receptors R1-6 most likely govern the input to the reflex in dark adaptation, a contribution of receptors R7 can be demonstrated with selective chromatic adaptation.


Colour Light Intensity Spectral Sensitivity Short Latency Dark Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bülthoff H (1982)Drosophila mutants disturbed in visual orientation. I. Mutants affected in early visual processing. Biol Cybern 45:63–70Google Scholar
  2. Fischbach KF (1979) Simultaneous and successive colour contrast expressed in ‘slow’ phototactic behaviour of walkingDrosophila melanogaster. J Comp Physiol 130:161–171Google Scholar
  3. Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981) Sexual dimorphism in a photoreceptor. Nature 291:241–244Google Scholar
  4. Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Vision in Invertebrates (Handbook of sensory physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp 145–224Google Scholar
  5. Hardie RC (1977) Flight initiation in the flyLucilia. Proc Aust Physiol Pharmacol Soc 8:95PGoogle Scholar
  6. Hardie RC (1979) Electrophysiological analysis of fly retina. I. Comparative properties of R1-6 and R7 and 8. J Comp Physiol 129:19–33Google Scholar
  7. Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora. J Comp Physiol A 154:157–165Google Scholar
  8. Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York, pp 1–79Google Scholar
  9. Hateren JH van (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154:761–771Google Scholar
  10. Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior ofDrosophila melanogaster. J Comp Physiol 117:127–162Google Scholar
  11. Hu KG, Stark WS (1977) Specific receptor input into spectral preference inDrosophila. J Comp Physiol 121:241–252Google Scholar
  12. Hu KG, Reichert H, Stark WS (1978) Electrophysiological characterization ofDrosophila ocelli. J Comp Physiol 126:15–24Google Scholar
  13. King DG, Wyman RJ (1980) Anatomy of the giant fibre pathway inDrosophila. I. Three thoracic components of the pathway. J Neurocytol 9:753–770Google Scholar
  14. Kirschfeld K, Franceschini N (1968) Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik 5:47–52Google Scholar
  15. Kirschfeld K, Lutz B (1977) The spectral sensitivity of the ocelli ofCalliphora (Diptera). Z Naturforsch 32c: 439–441Google Scholar
  16. Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomere of fly photoreceptors No. 7. J Comp Physiol 125:275–284Google Scholar
  17. Kirschfeld K, Feiler R, Minke B (1979) The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Z Naturforsch 33c: 1009–1010Google Scholar
  18. Levine J (1974) Giant neuron input in mutant and wild typeDrosophila. J Comp Physiol 93:265–285Google Scholar
  19. Levine J, Tracey D (1973) Structure and function of the giant motorneuron ofDrosophila melanogaster. J Comp Physiol 87:213–235Google Scholar
  20. Miller GV, Hansen KN, Stark WS (1981) Phototaxis inDrosophila. R1-6 input and interaction among ocellar and compound eye receptors. J Insect Physiol 27:813–819Google Scholar
  21. Mulloney B (1969) Interneurons in the central nervous system of flies and the start of flight. Z Vergl Physiol 64:243–253Google Scholar
  22. Scholes J (1969) The electrical responses of the retinal receptors and the lamina in the visual system of the flyMusca. Kybernetik 6:149–162Google Scholar
  23. Tinbergen J, Abeln RG (1983) Spectral sensitivity of the landing blowfly. J Comp Physiol 150:319–328Google Scholar
  24. Wada S (1974) Spezielle randzonale Ommatidien vonCalliphora erythrocephala Meig. (Diptera: Calliphoridae): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Int J Insect Morphol Embryol 3:397–424Google Scholar
  25. Wehner R (1981) Spatial Vision in Arthropods. In: Autrum H (ed) Vision in Invertebrates (Handbook of sensory physiology, vol VII/6C). Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  26. Wehrhahn C (1976) Evidence for the role of retinal receptors R7/8 in the orientation behaviour of the fly. Biol Cybern 21:213–220Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. Kirschfeld
    • 1
  • K. Vogt
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations