Journal of Applied Electrochemistry

, Volume 12, Issue 3, pp 281–290 | Cite as

Anodic reactions of Ni3S2, β-NiS and nickel matte

  • D. C. Price
  • W. G. Davenport
Papers

Abstract

The anodic reactions of Ni3S2,β-NiS and a commercial nickel matte have been investigated galvanostatically. It is shown that the matte as well as both compounds decompose with loss of nickel ions through the series of phases: Ni1.5S2 → Ni1.2S2 → NiS2 → Ni2+ + 2S0

Keywords

Physical Chemistry Nickel Anodic Reaction NiS2 Nickel Matte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Loshkarev, O. Esin and G. Lapp,Zhur. Priklad. Khim. 18 (1945) 294.Google Scholar
  2. [2]
    L. S. Renzoni, R. C. McQuire and M. V. Baker,J Metals 10 (1965) 38.Google Scholar
  3. [3]
    W. W. Spence and W. R. Cooke,Trans. Can. Min. Mer. 67 (1967) 257.Google Scholar
  4. [4]
    D. A. D. Boateng and C. R. Phillips,Min. Sci. Eng. 10 (1978) 155.Google Scholar
  5. [5]
    A. L. Rotinyan,Tsvetnye. Metall. 32 (1954) 88.Google Scholar
  6. [6]
    D. M. Chizhikov,et al. Izv. Akad. Nauk. SSR (1962) Chemical Abstracts58 (1963) 1128h.Google Scholar
  7. [7]
    I. S. Ivanov and V. L. Kheifets,Tr. Proekt. Nauch. Issed Inst ‘Gipronikel’ (Gos. Inst. Proekt, Predpr Nickelevai Prom.) 38 (1968) 71.Google Scholar
  8. [8]
    I. S. Ivanov,Zh. Pricklad Khim 41 (1968) 1017.Google Scholar
  9. [9]
    F. Habashi,Min. Sci. Eng. 3 (1971) 3.Google Scholar
  10. [10]
    L. S. Sinev, N. S. Shchetinin and Y. G. Brodynskii,Shur. Fiz. Kim. 48 (1974) 1194.Google Scholar
  11. [11]
    R. G. Bautista and D. S. Flett, Warren Spring Laboratory Report No. Lr 226 (ME) (1976) Stevenage, England.Google Scholar
  12. [12]
    J. A. King, PhD thesis, University of London (1966).Google Scholar
  13. [13]
    D. C. Price and J. P. Chilton,Hydromet. 7 (1981) 117.Google Scholar
  14. [14]
    D. C. Price,Met. Trans. 12B (1981) 231.Google Scholar
  15. [15]
    H. J. S. Sand,Phil. Mag. 1 (1901) 45.Google Scholar
  16. [16]
    T. Berzins and P. Delahay,J. Amer. Chem. Soc. 75 (1953) 4205.Google Scholar
  17. [17]
    T. Kato and T. Oki,Nippon Kinzoku Gakkaishi 37 (1973) 1338.Google Scholar
  18. [18]
    C. DeRantny and R. Breckpot,Bull. Soc. Chem. Belges 78 (1969) 503.Google Scholar
  19. [19]
    ASTM, X-ray Diffraction Index, 8–126.Google Scholar
  20. [20]
    P. Delahay and T. Berzins,J. Amer. Chem. Soc. 75 (1953) 2488.Google Scholar
  21. [21]
    P. Delahay, ‘New Instrumental Methods in Electrochemistry’, Interscience Publishers, New York, (1954).Google Scholar
  22. [22]
    E. Ghali, A. Maruejauls and D. Deroo,J. Appl. Electrochem. 10 (1980) 709.Google Scholar
  23. [23]
    ASTM, X-ray Diffraction Index, 12–41.Google Scholar
  24. [24]
    ‘Gemlins Handbuch, Syst. 60, B(2)’, Springer Verlag, Berlin (1960) p. 627.Google Scholar
  25. [25]
    I. S. Ivanov,Zh. Prikl. Khim. 41 (1968) 1017.Google Scholar
  26. [26]
    D. F. A. Koch and R. J. McIntyre,J. Electroanal. Chem. 71 (1976) 285.Google Scholar
  27. [27]
    C. Wagner,Z. Chem. Phys. 21 (1953) 1819.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • D. C. Price
    • 1
  • W. G. Davenport
    • 1
  1. 1.Department of Mining and Metallurgical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations