Advertisement

Journal of Applied Electrochemistry

, Volume 12, Issue 3, pp 281–290 | Cite as

Anodic reactions of Ni3S2, β-NiS and nickel matte

  • D. C. Price
  • W. G. Davenport
Papers

Abstract

The anodic reactions of Ni3S2,β-NiS and a commercial nickel matte have been investigated galvanostatically. It is shown that the matte as well as both compounds decompose with loss of nickel ions through the series of phases: Ni1.5S2 → Ni1.2S2 → NiS2 → Ni2+ + 2S0

Keywords

Physical Chemistry Nickel Anodic Reaction NiS2 Nickel Matte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Loshkarev, O. Esin and G. Lapp,Zhur. Priklad. Khim. 18 (1945) 294.Google Scholar
  2. [2]
    L. S. Renzoni, R. C. McQuire and M. V. Baker,J Metals 10 (1965) 38.Google Scholar
  3. [3]
    W. W. Spence and W. R. Cooke,Trans. Can. Min. Mer. 67 (1967) 257.Google Scholar
  4. [4]
    D. A. D. Boateng and C. R. Phillips,Min. Sci. Eng. 10 (1978) 155.Google Scholar
  5. [5]
    A. L. Rotinyan,Tsvetnye. Metall. 32 (1954) 88.Google Scholar
  6. [6]
    D. M. Chizhikov,et al. Izv. Akad. Nauk. SSR (1962) Chemical Abstracts58 (1963) 1128h.Google Scholar
  7. [7]
    I. S. Ivanov and V. L. Kheifets,Tr. Proekt. Nauch. Issed Inst ‘Gipronikel’ (Gos. Inst. Proekt, Predpr Nickelevai Prom.) 38 (1968) 71.Google Scholar
  8. [8]
    I. S. Ivanov,Zh. Pricklad Khim 41 (1968) 1017.Google Scholar
  9. [9]
    F. Habashi,Min. Sci. Eng. 3 (1971) 3.Google Scholar
  10. [10]
    L. S. Sinev, N. S. Shchetinin and Y. G. Brodynskii,Shur. Fiz. Kim. 48 (1974) 1194.Google Scholar
  11. [11]
    R. G. Bautista and D. S. Flett, Warren Spring Laboratory Report No. Lr 226 (ME) (1976) Stevenage, England.Google Scholar
  12. [12]
    J. A. King, PhD thesis, University of London (1966).Google Scholar
  13. [13]
    D. C. Price and J. P. Chilton,Hydromet. 7 (1981) 117.Google Scholar
  14. [14]
    D. C. Price,Met. Trans. 12B (1981) 231.Google Scholar
  15. [15]
    H. J. S. Sand,Phil. Mag. 1 (1901) 45.Google Scholar
  16. [16]
    T. Berzins and P. Delahay,J. Amer. Chem. Soc. 75 (1953) 4205.Google Scholar
  17. [17]
    T. Kato and T. Oki,Nippon Kinzoku Gakkaishi 37 (1973) 1338.Google Scholar
  18. [18]
    C. DeRantny and R. Breckpot,Bull. Soc. Chem. Belges 78 (1969) 503.Google Scholar
  19. [19]
    ASTM, X-ray Diffraction Index, 8–126.Google Scholar
  20. [20]
    P. Delahay and T. Berzins,J. Amer. Chem. Soc. 75 (1953) 2488.Google Scholar
  21. [21]
    P. Delahay, ‘New Instrumental Methods in Electrochemistry’, Interscience Publishers, New York, (1954).Google Scholar
  22. [22]
    E. Ghali, A. Maruejauls and D. Deroo,J. Appl. Electrochem. 10 (1980) 709.Google Scholar
  23. [23]
    ASTM, X-ray Diffraction Index, 12–41.Google Scholar
  24. [24]
    ‘Gemlins Handbuch, Syst. 60, B(2)’, Springer Verlag, Berlin (1960) p. 627.Google Scholar
  25. [25]
    I. S. Ivanov,Zh. Prikl. Khim. 41 (1968) 1017.Google Scholar
  26. [26]
    D. F. A. Koch and R. J. McIntyre,J. Electroanal. Chem. 71 (1976) 285.Google Scholar
  27. [27]
    C. Wagner,Z. Chem. Phys. 21 (1953) 1819.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • D. C. Price
    • 1
  • W. G. Davenport
    • 1
  1. 1.Department of Mining and Metallurgical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations